@inproceedings{segura-bedmar-etal-2017-exploring,
    title = "Exploring Convolutional Neural Networks for Sentiment Analysis of {S}panish tweets",
    author = "Segura-Bedmar, Isabel  and
      Quir{\'o}s, Antonio  and
      Mart{\'i}nez, Paloma",
    editor = "Lapata, Mirella  and
      Blunsom, Phil  and
      Koller, Alexander",
    booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
    month = apr,
    year = "2017",
    address = "Valencia, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/E17-1095/",
    pages = "1014--1022",
    abstract = "Spanish is the third-most used language on the internet, after English and Chinese, with a total of 7.7{\%} (more than 277 million of users) and a huge internet growth of more than 1,400{\%}. However, most work on sentiment analysis has been focused on English. This paper describes a deep learning system for Spanish sentiment analysis. To the best of our knowledge, this is the first work that explores the use of a convolutional neural network to polarity classification of Spanish tweets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="segura-bedmar-etal-2017-exploring">
    <titleInfo>
        <title>Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Isabel</namePart>
        <namePart type="family">Segura-Bedmar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Antonio</namePart>
        <namePart type="family">Quirós</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paloma</namePart>
        <namePart type="family">Martínez</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-04</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Mirella</namePart>
            <namePart type="family">Lapata</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Phil</namePart>
            <namePart type="family">Blunsom</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alexander</namePart>
            <namePart type="family">Koller</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Valencia, Spain</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Spanish is the third-most used language on the internet, after English and Chinese, with a total of 7.7% (more than 277 million of users) and a huge internet growth of more than 1,400%. However, most work on sentiment analysis has been focused on English. This paper describes a deep learning system for Spanish sentiment analysis. To the best of our knowledge, this is the first work that explores the use of a convolutional neural network to polarity classification of Spanish tweets.</abstract>
    <identifier type="citekey">segura-bedmar-etal-2017-exploring</identifier>
    <location>
        <url>https://aclanthology.org/E17-1095/</url>
    </location>
    <part>
        <date>2017-04</date>
        <extent unit="page">
            <start>1014</start>
            <end>1022</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets
%A Segura-Bedmar, Isabel
%A Quirós, Antonio
%A Martínez, Paloma
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F segura-bedmar-etal-2017-exploring
%X Spanish is the third-most used language on the internet, after English and Chinese, with a total of 7.7% (more than 277 million of users) and a huge internet growth of more than 1,400%. However, most work on sentiment analysis has been focused on English. This paper describes a deep learning system for Spanish sentiment analysis. To the best of our knowledge, this is the first work that explores the use of a convolutional neural network to polarity classification of Spanish tweets.
%U https://aclanthology.org/E17-1095/
%P 1014-1022
Markdown (Informal)
[Exploring Convolutional Neural Networks for Sentiment Analysis of Spanish tweets](https://aclanthology.org/E17-1095/) (Segura-Bedmar et al., EACL 2017)
ACL