@inproceedings{stamatatos-2017-authorship,
title = "Authorship Attribution Using Text Distortion",
author = "Stamatatos, Efstathios",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1107/",
pages = "1138--1149",
abstract = "Authorship attribution is associated with important applications in forensics and humanities research. A crucial point in this field is to quantify the personal style of writing, ideally in a way that is not affected by changes in topic or genre. In this paper, we present a novel method that enhances authorship attribution effectiveness by introducing a text distortion step before extracting stylometric measures. The proposed method attempts to mask topic-specific information that is not related to the personal style of authors. Based on experiments on two main tasks in authorship attribution, closed-set attribution and authorship verification, we demonstrate that the proposed approach can enhance existing methods especially under cross-topic conditions, where the training and test corpora do not match in topic."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stamatatos-2017-authorship">
<titleInfo>
<title>Authorship Attribution Using Text Distortion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Efstathios</namePart>
<namePart type="family">Stamatatos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Authorship attribution is associated with important applications in forensics and humanities research. A crucial point in this field is to quantify the personal style of writing, ideally in a way that is not affected by changes in topic or genre. In this paper, we present a novel method that enhances authorship attribution effectiveness by introducing a text distortion step before extracting stylometric measures. The proposed method attempts to mask topic-specific information that is not related to the personal style of authors. Based on experiments on two main tasks in authorship attribution, closed-set attribution and authorship verification, we demonstrate that the proposed approach can enhance existing methods especially under cross-topic conditions, where the training and test corpora do not match in topic.</abstract>
<identifier type="citekey">stamatatos-2017-authorship</identifier>
<location>
<url>https://aclanthology.org/E17-1107/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>1138</start>
<end>1149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Authorship Attribution Using Text Distortion
%A Stamatatos, Efstathios
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F stamatatos-2017-authorship
%X Authorship attribution is associated with important applications in forensics and humanities research. A crucial point in this field is to quantify the personal style of writing, ideally in a way that is not affected by changes in topic or genre. In this paper, we present a novel method that enhances authorship attribution effectiveness by introducing a text distortion step before extracting stylometric measures. The proposed method attempts to mask topic-specific information that is not related to the personal style of authors. Based on experiments on two main tasks in authorship attribution, closed-set attribution and authorship verification, we demonstrate that the proposed approach can enhance existing methods especially under cross-topic conditions, where the training and test corpora do not match in topic.
%U https://aclanthology.org/E17-1107/
%P 1138-1149
Markdown (Informal)
[Authorship Attribution Using Text Distortion](https://aclanthology.org/E17-1107/) (Stamatatos, EACL 2017)
ACL
- Efstathios Stamatatos. 2017. Authorship Attribution Using Text Distortion. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1138–1149, Valencia, Spain. Association for Computational Linguistics.