@inproceedings{van-cranenburgh-bod-2017-data,
title = "A Data-Oriented Model of Literary Language",
author = "van Cranenburgh, Andreas and
Bod, Rens",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1115/",
pages = "1228--1238",
abstract = "We consider the task of predicting how literary a text is, with a gold standard from human ratings. Aside from a standard bigram baseline, we apply rich syntactic tree fragments, mined from the training set, and a series of hand-picked features. Our model is the first to distinguish degrees of highly and less literary novels using a variety of lexical and syntactic features, and explains 76.0 {\%} of the variation in literary ratings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-cranenburgh-bod-2017-data">
<titleInfo>
<title>A Data-Oriented Model of Literary Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">van Cranenburgh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rens</namePart>
<namePart type="family">Bod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the task of predicting how literary a text is, with a gold standard from human ratings. Aside from a standard bigram baseline, we apply rich syntactic tree fragments, mined from the training set, and a series of hand-picked features. Our model is the first to distinguish degrees of highly and less literary novels using a variety of lexical and syntactic features, and explains 76.0 % of the variation in literary ratings.</abstract>
<identifier type="citekey">van-cranenburgh-bod-2017-data</identifier>
<location>
<url>https://aclanthology.org/E17-1115/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>1228</start>
<end>1238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Data-Oriented Model of Literary Language
%A van Cranenburgh, Andreas
%A Bod, Rens
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F van-cranenburgh-bod-2017-data
%X We consider the task of predicting how literary a text is, with a gold standard from human ratings. Aside from a standard bigram baseline, we apply rich syntactic tree fragments, mined from the training set, and a series of hand-picked features. Our model is the first to distinguish degrees of highly and less literary novels using a variety of lexical and syntactic features, and explains 76.0 % of the variation in literary ratings.
%U https://aclanthology.org/E17-1115/
%P 1228-1238
Markdown (Informal)
[A Data-Oriented Model of Literary Language](https://aclanthology.org/E17-1115/) (van Cranenburgh & Bod, EACL 2017)
ACL
- Andreas van Cranenburgh and Rens Bod. 2017. A Data-Oriented Model of Literary Language. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1228–1238, Valencia, Spain. Association for Computational Linguistics.