@inproceedings{paetzold-specia-2017-lexical,
title = "Lexical Simplification with Neural Ranking",
author = "Paetzold, Gustavo and
Specia, Lucia",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2006/",
pages = "34--40",
abstract = "We present a new Lexical Simplification approach that exploits Neural Networks to learn substitutions from the Newsela corpus - a large set of professionally produced simplifications. We extract candidate substitutions by combining the Newsela corpus with a retrofitted context-aware word embeddings model and rank them using a new neural regression model that learns rankings from annotated data. This strategy leads to the highest Accuracy, Precision and F1 scores to date in standard datasets for the task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paetzold-specia-2017-lexical">
<titleInfo>
<title>Lexical Simplification with Neural Ranking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="family">Paetzold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new Lexical Simplification approach that exploits Neural Networks to learn substitutions from the Newsela corpus - a large set of professionally produced simplifications. We extract candidate substitutions by combining the Newsela corpus with a retrofitted context-aware word embeddings model and rank them using a new neural regression model that learns rankings from annotated data. This strategy leads to the highest Accuracy, Precision and F1 scores to date in standard datasets for the task.</abstract>
<identifier type="citekey">paetzold-specia-2017-lexical</identifier>
<location>
<url>https://aclanthology.org/E17-2006/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>34</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lexical Simplification with Neural Ranking
%A Paetzold, Gustavo
%A Specia, Lucia
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F paetzold-specia-2017-lexical
%X We present a new Lexical Simplification approach that exploits Neural Networks to learn substitutions from the Newsela corpus - a large set of professionally produced simplifications. We extract candidate substitutions by combining the Newsela corpus with a retrofitted context-aware word embeddings model and rank them using a new neural regression model that learns rankings from annotated data. This strategy leads to the highest Accuracy, Precision and F1 scores to date in standard datasets for the task.
%U https://aclanthology.org/E17-2006/
%P 34-40
Markdown (Informal)
[Lexical Simplification with Neural Ranking](https://aclanthology.org/E17-2006/) (Paetzold & Specia, EACL 2017)
ACL
- Gustavo Paetzold and Lucia Specia. 2017. Lexical Simplification with Neural Ranking. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 34–40, Valencia, Spain. Association for Computational Linguistics.