@inproceedings{cocos-callison-burch-2017-language,
title = "The Language of Place: Semantic Value from Geospatial Context",
author = "Cocos, Anne and
Callison-Burch, Chris",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2016/",
pages = "99--104",
abstract = "There is a relationship between what we say and where we say it. Word embeddings are usually trained assuming that semantically-similar words occur within the same textual contexts. We investigate the extent to which semantically-similar words occur within the same geospatial contexts. We enrich a corpus of geolocated Twitter posts with physical data derived from Google Places and OpenStreetMap, and train word embeddings using the resulting geospatial contexts. Intrinsic evaluation of the resulting vectors shows that geographic context alone does provide useful information about semantic relatedness."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cocos-callison-burch-2017-language">
<titleInfo>
<title>The Language of Place: Semantic Value from Geospatial Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Cocos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Callison-Burch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is a relationship between what we say and where we say it. Word embeddings are usually trained assuming that semantically-similar words occur within the same textual contexts. We investigate the extent to which semantically-similar words occur within the same geospatial contexts. We enrich a corpus of geolocated Twitter posts with physical data derived from Google Places and OpenStreetMap, and train word embeddings using the resulting geospatial contexts. Intrinsic evaluation of the resulting vectors shows that geographic context alone does provide useful information about semantic relatedness.</abstract>
<identifier type="citekey">cocos-callison-burch-2017-language</identifier>
<location>
<url>https://aclanthology.org/E17-2016/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>99</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Language of Place: Semantic Value from Geospatial Context
%A Cocos, Anne
%A Callison-Burch, Chris
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F cocos-callison-burch-2017-language
%X There is a relationship between what we say and where we say it. Word embeddings are usually trained assuming that semantically-similar words occur within the same textual contexts. We investigate the extent to which semantically-similar words occur within the same geospatial contexts. We enrich a corpus of geolocated Twitter posts with physical data derived from Google Places and OpenStreetMap, and train word embeddings using the resulting geospatial contexts. Intrinsic evaluation of the resulting vectors shows that geographic context alone does provide useful information about semantic relatedness.
%U https://aclanthology.org/E17-2016/
%P 99-104
Markdown (Informal)
[The Language of Place: Semantic Value from Geospatial Context](https://aclanthology.org/E17-2016/) (Cocos & Callison-Burch, EACL 2017)
ACL
- Anne Cocos and Chris Callison-Burch. 2017. The Language of Place: Semantic Value from Geospatial Context. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 99–104, Valencia, Spain. Association for Computational Linguistics.