@inproceedings{strapparava-mihalcea-2017-computational,
title = "A Computational Analysis of the Language of Drug Addiction",
author = "Strapparava, Carlo and
Mihalcea, Rada",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2022",
pages = "136--142",
abstract = "We present a computational analysis of the language of drug users when talking about their drug experiences. We introduce a new dataset of over 4,000 descriptions of experiences reported by users of four main drug types, and show that we can predict with an F1-score of up to 88{\%} the drug behind a certain experience. We also perform an analysis of the dominant psycholinguistic processes and dominant emotions associated with each drug type, which sheds light on the characteristics of drug users.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="strapparava-mihalcea-2017-computational">
<titleInfo>
<title>A Computational Analysis of the Language of Drug Addiction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a computational analysis of the language of drug users when talking about their drug experiences. We introduce a new dataset of over 4,000 descriptions of experiences reported by users of four main drug types, and show that we can predict with an F1-score of up to 88% the drug behind a certain experience. We also perform an analysis of the dominant psycholinguistic processes and dominant emotions associated with each drug type, which sheds light on the characteristics of drug users.</abstract>
<identifier type="citekey">strapparava-mihalcea-2017-computational</identifier>
<location>
<url>https://aclanthology.org/E17-2022</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>136</start>
<end>142</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Computational Analysis of the Language of Drug Addiction
%A Strapparava, Carlo
%A Mihalcea, Rada
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F strapparava-mihalcea-2017-computational
%X We present a computational analysis of the language of drug users when talking about their drug experiences. We introduce a new dataset of over 4,000 descriptions of experiences reported by users of four main drug types, and show that we can predict with an F1-score of up to 88% the drug behind a certain experience. We also perform an analysis of the dominant psycholinguistic processes and dominant emotions associated with each drug type, which sheds light on the characteristics of drug users.
%U https://aclanthology.org/E17-2022
%P 136-142
Markdown (Informal)
[A Computational Analysis of the Language of Drug Addiction](https://aclanthology.org/E17-2022) (Strapparava & Mihalcea, EACL 2017)
ACL
- Carlo Strapparava and Rada Mihalcea. 2017. A Computational Analysis of the Language of Drug Addiction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 136–142, Valencia, Spain. Association for Computational Linguistics.