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Abstract
The popular skip-gram model induces word
embeddings by exploiting the signal from
word-context coocurrence. We offer a new
interpretation of skip-gram based on ex-
ponential family PCA—a form of matrix
factorization. This makes it clear that we
can extend the skip-gram method to tensor
factorization, in order to train embeddings
through richer higher-order coocurrences,
e.g., triples that include positional informa-
tion (to incorporate syntax) or morphologi-
cal information (to share parameters across
related words). We experiment on 40 lan-
guages and show that our model improves
upon skip-gram.

1 Introduction

Over the past years NLP has witnessed a verita-
ble frenzy on the topic of word embeddings: low-
dimensional representations of distributional infor-
mation. The embeddings, trained on extremely
large text corpora such as Wikipedia and Common
Crawl, are claimed to encode semantic knowledge
extracted from large text corpora.

Numerous methods have been proposed—the
most popular being skip-gram (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014)—for
learning these low-dimensional embeddings from a
bag of contexts associated with each word type.
Natural language text, however, contains richer
structure than simple context-word pairs. In this
work, we embed n-tuples rather than pairs, allow-
ing us to escape the bag-of-words assumption and
encode richer linguistic structures.

As a first step, we offer a novel interpretation of
the skip-gram model (Mikolov et al., 2013). We
show how skip-gram can be viewed as an applica-
tion of exponential-family principal components
analysis (EPCA) (Collins et al., 2001) to an integer
matrix of coocurrence counts. Previous work has

related the negative sampling estimator for skip-
gram model parameters to the factorization of a
matrix of (shifted) positive pointwise mutual infor-
mation (Levy and Goldberg, 2014b). We show the
skip-gram objective is just EPCA factorization.

By extending EPCA factorization from matrices
to tensors, we can consider higher-order cooccur-
rence statistics. Here we explore incorporating
positional and morphological content in the model
by factorizing a positional tensor and morphology
tensor. The positional tensor directly incorporates
word order into the model, while the morphology
tensor adds word-internal information. We validate
our models experimentally on 40 languages and
show large gains under standard metrics.1

2 Matrix Factorization

In this section, we briefly explain how skip-gram
is an example of EPCA. We are given data in the
form of a matrix X ∈ Rn1×n2 , where Xij is the
number of times that word j appears in context i
under some user-specified definition of “context.”
Principal components analysis (Pearson, 1901)
approximates X as the product C>W of two matri-
ces C ∈ Rd×n1 and W ∈ Rd×n2 , whose columns
are d-dimensional vectors that embed the contexts
and the words, respectively, for some user-specified
d < min(n1, n2). Specifically, PCA minimizes2

∣∣∣∣∣∣X − C>W
∣∣∣∣∣∣2

F
=
∑
ij

(Xij − ci ·wj)
2 (1)

=
∑

j

∣∣∣∣∣∣xj − C>wj

∣∣∣∣∣∣2 (2)

where ci, wj , xj denote the ith column of C and
the jth columns of W and X , and ci ·wj denotes an
inner product of vectors (sometimes called “cosine

1The code developed is available at https://github.
com/azpoliak/skip-gram-tensor.

2Singh and Gordon (2008) offer a comprehensive discus-
sion of PCA and other matrix factorization techniques in ML.
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Figure 1: Comparison of the graphical model for matrix fac-
torization (either PCA or EPCA) and 3-dimensional tensor
factorization. Priors are omitted from the drawing.

similarity”). Note that rank(C>W ) ≤ d, whereas
rank(X) ≤ min(n1, n2). Globally optimizing
equation (1) means finding the best approximation
to X with rank ≤ d (Eckart and Young, 1936), and
can be done by SVD (Golub and Van Loan, 2012).

By rewriting equation (1) as (2), both Roweis
(1997) and Tipping and Bishop (1999) observed
that the optimal values of C and W can be regarded
as the maximum-likelihood parameter estimates for
the Gaussian graphical model drawn in Figure 1a.
This model supposes that the observed column vec-
tor xj equals C>wj plus Gaussian noise, specif-
ically xj ∼ N(C>wj , I). Equation (2) is this
model’s negated log-likelihood (plus a constant).3

However, recall that in our application, xj is a
vector of observed counts of the various contexts
in which word j appeared. Its elements are always
non-negative integers—so as Hofmann (1999) saw,
it is peculiar to model xj as having been drawn
from a Gaussian. EPCA is a generalization of
PCA, in which the observation xj can be drawn
according to any exponential-family distribution
(log-linear distribution) over vectors.4 The canon-
ical parameter vector for this distribution is given
by the jth column of C>W , that is, C>wj .5

3The graphical model further suggests that the ci and wj

vectors are themselves drawn from some prior. Specifying
this prior defines a MAP estimate of C and W . If we take the
prior to be a spherical Gaussian with mean 0 ∈ Rd, the MAP
estimate corresponds to minimizing (2) plus an L2 regularizer,
that is, a multiple of ||C||2F + ||W ||2F . We do indeed regularize
in this way throughout all our experiments, tuning the multi-
plier on a held-out development set. However, regularization
has only minor effects with large training corpora, and is not
in the original word2vec implementation of skip-gram.

4EPCA extends PCA in the same way that generalized lin-
ear models (GLMs) extend linear regression. The maximum-
likelihood interpretation of linear regression supposes that the
dependent variable xj is a linear function C of the indepen-
dent variable wj plus Gaussian noise. The GLM, like EPCA,
is an extension that allows other exponential-family distribu-
tions for the dependent variable xj . The difference is that in
EPCA, the representations wj are learned jointly with C.

5In the general form of EPCA, that column is passed
through some “inverse link” function to obtain the expected
feature values under the distribution, which in turn determines

EPCA allows us to suppose that each xj was
drawn from a multinomial—a more appropriate
family for drawing a count vector. Our observa-
tion is that skip-gram is precisely multinomial
EPCA with the canonical link function (Mo-
hamed, 2011), which generates xj from a multino-
mial with log-linear parameterization.That is, skip-
gram chooses embeddings C, W to maximize∑

j

∑
i

Xij log p(context i | word j) (3)

=
∑

j

∑
i

Xij log
exp (ci ·wj)∑
i′ exp (ci′ ·wj)

(4)

This is the log-likelihood (plus a constant) if we
assume that for each word j, the context vec-
tor xj was drawn from a multinomial with nat-
ural parameter vector C>wj and count parameter
Nj =

∑
i Xij . This is the same model as in Fig-

ure 1a, but with a different conditional distribution
for xj , and with xj taking an additional observed
parent Nj (which is the token count of word j).

2.1 Related work

Levy and Goldberg (2014b) also interpreted skip-
gram as matrix factorization. They argued that skip-
gram estimation by negative sampling implicitly
factorizes a shifted matrix of positive empirical
pointwise mutual information values. We instead
regard the skip-gram objective itself as demanding
EPCA-style factorization of the count matrix X:
i.e., X arose stochastically from some unknown
matrix of log-linear parameters (column j of X
generated from parameter column j), and we seek
a rank-d estimate C>W of that matrix.

pLSI (Hofmann, 1999) similarly factors an
unknown matrix of multinomial probabilities,
which is multinomial EPCA with the identity
link function. In contrast, our unknown matrix
holds log-linear parameters—arbitrarily shifted log-
probabilities, not probabilities.

Our EPCA interpretation applies equally well to
the component distributions that are used in hierar-
chical softmax (Morin and Bengio, 2005), which is
an alternative to negative sampling. Additionally,
it yields avenues of future research using Bayesian
(Mohamed et al., 2008) and maximum-margin (Sre-
bro et al., 2004) extensions to EPCA.

the canonical parameters of the distribution. We use the so-
called canonical link, meaning that these two steps are inverses
of each other and thus the canonical parameters are themselves
a linear function of wj .
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3 Tensor Factorization

Having seen that skip-gram is a form of matrix
factorization, we can generalize it to tensors. In
contrast to the matrix case, there are several distinct
definitions of tensor factorization (Kolda and Bader,
2009). We focus on the polyadic decomposition
(Hitchcock, 1927), which yields a satisfying gen-
eralization. The tensor analogue to PCA is rank-d
tensor approximation, which minimizes

||X− C 1⊗1 W 1⊗1 R ||2F
=
∑
ijk

(Xijk−1 · (ci �wj � rk))2 (5)

=
∑
jk

∣∣∣∣∣∣X·jk − C>(wj � rk)
∣∣∣∣∣∣2 (6)

Given a tensor X ∈ Rn1×n2×n3 , this objective tries
to predict each entry as the three-way dot product
of the columns ci,wj , rk ∈ Rd, thus finding an
approximation to X that factorizes into C, W, R.
This polyadic decomposition of the approximating
tensor can be viewed as a Tucker decomposition
(Tucker, 1966) that enforces a diagonal core.

In our setting, the new matrix R ∈ Rd×n3 em-
beds types of context-word relations. The tensor X

can be regarded as a collection of n2n3 count vec-
tors X·jk ∈ Nn1 : the fibers of the tensor, each of
which provides the context counts for some (word
j, relation k) pair. Typically, X·jk counts which
context words i are related to word j by relation k.

We now move from third-order PCA to third-
order EPCA. Minimizing equation (6) corresponds
to maximum-likelihood estimation of the graph-
ical model in Figure 1b, in which each fiber of
X is viewed as being generated from a Gaussian
all at once. Our higher-order skip-gram (HOSG)
replaces this Gaussian with a multinomial. Thus,
HOSG attempts to maximize the log-likelihood∑

ijk

Xijk log p(context i | word j, relation k) (7)

=
∑
ijk

Xijk log
exp (1 · (ci �wj � rk))∑
i′ exp (1 · (ci′ �wj � rk))

(8)

Note that as before, we are taking the total count
Njk =

∑
i Xijk to be observed. So while our em-

bedding matrices must predict which words are
related to word j by relation k, we are not proba-
bilistically modeling how often word j participates
in relation k in the first place (nor how often word
j occurs overall). A simple and natural move in

future would be to extend the generative model to
predict these facts also from wj and rk, although
this weakens the pedagogical connection to EPCA.

We locally optimize the parameters of our prob-
ability model—the word, context and relation
embeddings—through stochastic gradient ascent
on (7). Each stochastic gradient step computes the
gradient of a single summand Xijk log p(i | j, k).
Unfortunately, this requires summing over n1 con-
texts in the denominator of (8), which is problem-
atic as n1 is often very large, e.g., 107. Mikolov
et al. (2013) offer two speedup schemes: negative
sampling and hierarchical softmax. Here we apply
the negative sampling approximation to HOSG; hi-
erarchical softmax is also applicable. See Goldberg
and Levy (2014) for an in-depth discussion.

HOSG is a bit slower to train than skip-gram,
since X yields up to n3 times as many summands
as X (but� n3 in practice, as X is often sparse).

4 Two Tensors for Word Embedding

As examples of useful tensors to factorize, we offer
two third-order generalizations of Mikolov et al.
(2013)’s context-word matrix. We are still predict-
ing the distribution of contexts of a given word type.
Our first version increases the number of param-
eters (giving more expressivity) by conditioning
on additional information. Our second version de-
creases the number of parameters (giving better
smoothing) by factoring the word type.

4.1 Positional Tensor

When predicting the context words in a window
around a given word token, Mikolov et al. (2013)
uses the same distribution to predict each of them.
We propose to use different distributions at dif-
ferent positions in the window, via a “positional
tensor”: X〈dog,ran,-2〉 is the number of times the
context word dog was seen two positions to the
left of ran. We will predict this count using
p(dog | ran,-2), defined from the embeddings
of the word ran, the position -2, and the context
word dog and its competitors. For a 10-word win-
dow, we have X ∈ R|V |×|V |×10. Considering word
position should improve syntactic awareness.

4.2 Compositional Morphology Tensor

For Mikolov et al. (2013), related words such as
ran and running are monolithic objects that do
not share parameters. We decompose each word
into a lemma j and a morphological tag k. The
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ar bg ca cs da de el en es et eu fa fi fo fr ga gl he hi
SG .25 .22 .41 .20 .21 .49 .58 .44 .41 .09 .41 .39 .20 .32 .41 .22 .43 .31 .10
HOSG .40 .46 .45 .36 .50 .48 .61 .48 .42 .28 .46 .43 .39 .40 .40 .29 .46 .44 .40
∆ +.15 +.24 +.14 +.16 +.29 −.01 +.03 +.04 +.01 +.19 +.05 +.04 +.19 +.08 −.01 +.07 +.03 +.13 +.30

c = 2 hr hu id it kk la lv nl no pl pt ro ru sl sv ta tr ug vi
SG .51 .36 .41 .45 .47 .42 .21 .42 .30 .43 .42 .28 .34 .13 .54 .60 .22 .53 .57
HOSG .53 .49 .43 .46 .43 .46 .38 .45 .47 .44 .42 .46 .33 .37 .51 .58 .41 .62 .60
∆ +.02 +.13 +.02 +.01 −.04 +.04 +.17 +.03 +.17 +.01 0.0 +.18 −.01 +.24 −.03 −.02 +.21 +.09 +.03

ar bg ca cs da de el en es et eu fa fi fo fr ga gl he hi
SG .24 .41 .39 .29 .44 .45 .54 .52 .45 .40 .40 .38 .37 .33 .39 .53 .40 .38 .48
HOSG .29 .47 .42 .36 .49 .52 .60 .54 .48 .42 .45 .44 .43 .41 .42 .56 .45 .43 .51
∆ +.05 +.06 +.03 +.07 +.04 +.07 +.06 +.02 +.03 +.02 +.05 +.06 +.06 +.08 +.08 +.06 +.06 +.05 +.03

c = 5 hr hu id it kk la lv nl no pl pt ro ru sl sv ta tr ug vi
SG .50 .46 .39 .42 .47 .43 .52 .43 .39 .41 .38 .38 .24 .40 .46 .59 .38 .57 .57
HOSG .53 .49 .44 .50 .40 .46 .54 .50 .44 .47 .44 .43 .34 .46 .52 .58 .43 .63 .61
∆ +.03 +.03 +.05 +.08 −.07 +.03 +.02 +.07 +.06 +.06 +.06 +.05 +.10 +.06 +.05 −.01 +.06 +.06 +.04

Table 1: The scores for QVEC-CCA for 40 languages. All embeddings were trained on the complete Wikipedia dump of September
2016. We measure correlation with universal POS tags from the UD treebanks.

contexts i are still full words.6 Thus, we predict the
count X〈dog,RUN,t〉 using p(dog | RUN, t), where t
is a morphological tag such as [pos=V,tense=PAST].

Our model is essentially a version of the skip-
gram method (Mikolov et al., 2013) that parameter-
izes the embedding of the word ran as a Hadamard
product wj�rk, where wj embeds RUN and rk em-
beds tag t. This is similar to the work of Cotterell
et al. (2016), who parameterized word embeddings
as a sum wj + rk of embeddings of the component
morphemes.7 Our Hadamard product embedding
is in fact more general, since the additive embed-
ding wj + rk can be recovered as a special case—it
is equal to (wj ; 1) � (1; rk), which uses twice as
many dimensions to embed each object.

5 Experiments

We build HOSG on top of the HYPERWORDS pack-
age. All models (both skip-gram and higher-order
skip-gram) are trained for 10 epochs and use 5
negative samples. All models for §5.1 are trained
on the Sept. 2016 dump of the full Wikipedia. All
models for §5.2 were trained on the lemmatized and
POS-tagged WaCky corpora (Baroni et al., 2009)
for French, Italian, German and English (Joubarne
and Inkpen, 2011; Leviant and Reichart, 2015). To
ensure controlled and fair experiments, we follow
Levy et al. (2015) for all preprocessing.

5.1 Experiment 1: Positional Tensor
We postulate that the positional tensor should en-
code richer notions of syntax than standard bag-

6If one wanted to extend the model to decompose the
context words i as well, we see at least four approaches.

7Cotterell et al. (2016) made two further moves that could
be applied to extend the present paper. First, they allowed a
word to consist of any number of (unordered) morphemes—
not necessarily two—whose embeddings were combined (by
summation) to get the word embedding. Second, this sum also
included word-specific random noise, allowing them to learn
word embeddings that deviated from compositionality.

of-words vectors. Why? Positional information
allow us to differentiate between the geometry of
the coocurrence, e.g., the is found to the left of the
noun it modifies and is—more often than—close
to it. Our tensor factorization model explicitly en-
codes this information during training.

To evaluate the vectors, we use QVEC (Tsvetkov
et al., 2016), which measures Pearson’s correla-
tion between human-annotated judgements and
the vectors using CCA. The QVEC metric will
be higher if the vectors better correlate with the
human-annotated resource. To measure the syntac-
tic content of the vectors, we compute the correla-
tion between our learned vector wi for each word
and its empirical distribution gi over universal POS
tags (Petrov et al., 2012) in the UD treebank (Nivre
et al., 2016). gi can be regarded as a vector on the
(|T| − 1)-dimensional simplex, where T is the tag
set. We report results on 40 languages from the UD
treebanks in Table 1, using 4-word or 10-word sym-
metric context windows (i.e., c ∈ {2, 5}). We find
that for 77.5% of the languages, our positional ten-
sor embeddings outperform the standard skip-gram
approach on the QVEC metric.

We highlight again that the positional tensor ex-
ploits no additional annotation, but better exploits
the signal found in the raw text. Of course, our
HOSG method could also be used to exploit anno-
tations if available: e.g., one would get different
embeddings by defining the relations of word j to
be the labeled syntactic dependency relations in
which it participates (Lin and Pantel, 2001; Levy
and Goldberg, 2014a).

5.2 Experiment 2: Morphology Tensor

Since the compositional morphology tensor allows
us to share parameters among related word forms,
we get a single embedding for each lemma, i.e.,
all the words ran, run and running now con-
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fr it de en
353 353 SIML RG-65 353 SIML Z222 RG-65 353 MEN MTURK SIML SIMV RW

SG 48.31 43.63 21.33 44.90 28.39 50.39 29.75 70.60 64.50 64.33 58.77 41.62 30.48 40.78
HOSG 58.21 45.00 28.54 68.08 40.09 53.97 31.11 71.71 63.72 66.66 62.64 49.70 29.96 42.40
∆ +9.90 +1.37 +7.21 +23.18 +11.7 +3.58 +1.36 +1.11 -0.78 +2.33 +3.87 +8.08 +0.52 +1.62

Table 2: Word similarity results comparing the compositional morphology tensor with the standard skip-gram model. Numbers
indicate Spearman’s correlation coefficient ρ between human similarity judgements and the cosine distances of vectors. For each
language, we compare on several sets of human judgments as listed by Faruqui et al. (2016, Table 2).

tribute signal to the embedding of run. We expect
these lemma embeddings to be predictive of human
judgments of lemma similarity.

We evaluate using standard datasets on four
languages (French, Italian, German and English).
Given a list of pairs of words (always lemmata),
multiple native speakers judged (on a scale of 1–
10) how “similar” those words are conceptually.
Our model produces a similarity judgment for each
pair using the cosine similarity of their lemma em-
beddings wj . Table 2 shows how well this learned
judgment correlates with the average human judg-
ment. Our model does achieve higher correlation
than skip-gram word embeddings. Note we did not
compare to a baseline that simply embeds lemmas
rather than words (equivalent to fixing rk = 1).

6 Related Work

Tensor factorization has already found uses in a few
corners of NLP research. Van de Cruys et al. (2013)
applied tensor factorization to model the composi-
tionality of subject-verb-object triples. Similarly,
Hashimoto and Tsuruoka (2015) use an implicit
tensor factorization method to learn embeddings
for transitive verb phrases. Tensor factorization
also appears in semantic-based NLP tasks. Lei et al.
(2015) explicitly factorize a tensor based on feature
vectors for predicting semantic roles. Chang et al.
(2014) use tensor factorization to create knowledge
base embeddings optimized for relation extraction.
See Bouchard et al. (2015) for a large bibliography.

Other researchers have likewise attempted to es-
cape the bag-of-words assumption in word embed-
dings, e.g., Yatbaz et al. (2012) incorporates mor-
phological and orthographic features into continu-
ous vectors; Cotterell and Schütze (2015) consider
a multi-task set-up to force morphological informa-
tion into embeddings; Cotterell and Schütze (2017)
jointly morphologically segment and embed words;
Levy and Goldberg (2014a) derive contexts based
on dependency relations; PPDB (Ganitkevitch et
al., 2013) employs a mixed bag of words, parts of
speech, and syntax; Rastogi et al. (2015) represent
word contexts, morphology, semantic frame rela-

tions, syntactic dependency relations, and multi-
lingual bitext counts each as separate matrices,
combined via GCCA; and, finally, Schwartz et
al. (2016) derived embeddings based on Hearst
patterns (Hearst, 1992). Ling et al. (2015) learn
position-specific word embeddings (§4.1), but do
not factor them as wj � rk to share parameters (we
did not compare empirically to this). As demon-
strated in the experiments, our tensor factorization
method enables us to include other syntactic proper-
ties besides word order, e.g. morphology. Poliak et
al. (2017) also create positional word embeddings.
Our research direction is orthogonal to these efforts
in that we provide a general purpose procedure for
all sorts of higher-order coocurrence.

7 Conclusion

We have presented an interpretation of the skip-
gram model as exponential family principal com-
ponents analysis—a form of matrix factorization—
and, thus, related it to an older strain of work.
Building on this connection, we generalized the
model to the tensor case. Such higher-order skip-
gram methods can incorporate more linguistic
structure without sacrificing scalability, as we il-
lustrated by making our embeddings consider word
order or morphology. These methods achieved
better word embeddings as evaluated by standard
metrics on 40 languages.
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