Improving ROUGE for Timeline Summarization

Sebastian Martschat, Katja Markert


Abstract
Current evaluation metrics for timeline summarization either ignore the temporal aspect of the task or require strict date matching. We introduce variants of ROUGE that allow alignment of daily summaries via temporal distance or semantic similarity. We argue for the suitability of these variants in a theoretical analysis and demonstrate it in a battery of task-specific tests.
Anthology ID:
E17-2046
Volume:
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
Month:
April
Year:
2017
Address:
Valencia, Spain
Editors:
Mirella Lapata, Phil Blunsom, Alexander Koller
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
285–290
Language:
URL:
https://aclanthology.org/E17-2046
DOI:
Bibkey:
Cite (ACL):
Sebastian Martschat and Katja Markert. 2017. Improving ROUGE for Timeline Summarization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 285–290, Valencia, Spain. Association for Computational Linguistics.
Cite (Informal):
Improving ROUGE for Timeline Summarization (Martschat & Markert, EACL 2017)
Copy Citation:
PDF:
https://aclanthology.org/E17-2046.pdf