@inproceedings{suzuki-nagata-2017-cutting,
title = "Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization",
author = "Suzuki, Jun and
Nagata, Masaaki",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2047/",
pages = "291--297",
abstract = "This paper tackles the reduction of redundant repeating generation that is often observed in RNN-based encoder-decoder models. Our basic idea is to jointly estimate the upper-bound frequency of each target vocabulary in the encoder and control the output words based on the estimation in the decoder. Our method shows significant improvement over a strong RNN-based encoder-decoder baseline and achieved its best results on an abstractive summarization benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suzuki-nagata-2017-cutting">
<titleInfo>
<title>Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper tackles the reduction of redundant repeating generation that is often observed in RNN-based encoder-decoder models. Our basic idea is to jointly estimate the upper-bound frequency of each target vocabulary in the encoder and control the output words based on the estimation in the decoder. Our method shows significant improvement over a strong RNN-based encoder-decoder baseline and achieved its best results on an abstractive summarization benchmark.</abstract>
<identifier type="citekey">suzuki-nagata-2017-cutting</identifier>
<location>
<url>https://aclanthology.org/E17-2047/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>291</start>
<end>297</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization
%A Suzuki, Jun
%A Nagata, Masaaki
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F suzuki-nagata-2017-cutting
%X This paper tackles the reduction of redundant repeating generation that is often observed in RNN-based encoder-decoder models. Our basic idea is to jointly estimate the upper-bound frequency of each target vocabulary in the encoder and control the output words based on the estimation in the decoder. Our method shows significant improvement over a strong RNN-based encoder-decoder baseline and achieved its best results on an abstractive summarization benchmark.
%U https://aclanthology.org/E17-2047/
%P 291-297
Markdown (Informal)
[Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization](https://aclanthology.org/E17-2047/) (Suzuki & Nagata, EACL 2017)
ACL