@inproceedings{coavoux-crabbe-2017-multilingual,
    title = "Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks",
    author = "Coavoux, Maximin  and
      Crabb{\'e}, Beno{\^i}t",
    editor = "Lapata, Mirella  and
      Blunsom, Phil  and
      Koller, Alexander",
    booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
    month = apr,
    year = "2017",
    address = "Valencia, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/E17-2053/",
    pages = "331--336",
    abstract = "We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coavoux-crabbe-2017-multilingual">
    <titleInfo>
        <title>Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Maximin</namePart>
        <namePart type="family">Coavoux</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Benoît</namePart>
        <namePart type="family">Crabbé</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-04</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Mirella</namePart>
            <namePart type="family">Lapata</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Phil</namePart>
            <namePart type="family">Blunsom</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alexander</namePart>
            <namePart type="family">Koller</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Valencia, Spain</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.</abstract>
    <identifier type="citekey">coavoux-crabbe-2017-multilingual</identifier>
    <location>
        <url>https://aclanthology.org/E17-2053/</url>
    </location>
    <part>
        <date>2017-04</date>
        <extent unit="page">
            <start>331</start>
            <end>336</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks
%A Coavoux, Maximin
%A Crabbé, Benoît
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F coavoux-crabbe-2017-multilingual
%X We introduce a constituency parser based on a bi-LSTM encoder adapted from recent work (Cross and Huang, 2016b; Kiperwasser and Goldberg, 2016), which can incorporate a lower level character biLSTM (Ballesteros et al., 2015; Plank et al., 2016). We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.
%U https://aclanthology.org/E17-2053/
%P 331-336
Markdown (Informal)
[Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks](https://aclanthology.org/E17-2053/) (Coavoux & Crabbé, EACL 2017)
ACL