@inproceedings{pezzelle-etal-2017-precise,
title = "Be Precise or Fuzzy: Learning the Meaning of Cardinals and Quantifiers from Vision",
author = "Pezzelle, Sandro and
Marelli, Marco and
Bernardi, Raffaella",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2054/",
pages = "337--342",
abstract = "People can refer to quantities in a visual scene by using either exact cardinals (e.g. one, two, three) or natural language quantifiers (e.g. few, most, all). In humans, these two processes underlie fairly different cognitive and neural mechanisms. Inspired by this evidence, the present study proposes two models for learning the objective meaning of cardinals and quantifiers from visual scenes containing multiple objects. We show that a model capitalizing on a {\textquoteleft}fuzzy' measure of similarity is effective for learning quantifiers, whereas the learning of exact cardinals is better accomplished when information about number is provided."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pezzelle-etal-2017-precise">
<titleInfo>
<title>Be Precise or Fuzzy: Learning the Meaning of Cardinals and Quantifiers from Vision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Pezzelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Marelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raffaella</namePart>
<namePart type="family">Bernardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>People can refer to quantities in a visual scene by using either exact cardinals (e.g. one, two, three) or natural language quantifiers (e.g. few, most, all). In humans, these two processes underlie fairly different cognitive and neural mechanisms. Inspired by this evidence, the present study proposes two models for learning the objective meaning of cardinals and quantifiers from visual scenes containing multiple objects. We show that a model capitalizing on a ‘fuzzy’ measure of similarity is effective for learning quantifiers, whereas the learning of exact cardinals is better accomplished when information about number is provided.</abstract>
<identifier type="citekey">pezzelle-etal-2017-precise</identifier>
<location>
<url>https://aclanthology.org/E17-2054/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>337</start>
<end>342</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Be Precise or Fuzzy: Learning the Meaning of Cardinals and Quantifiers from Vision
%A Pezzelle, Sandro
%A Marelli, Marco
%A Bernardi, Raffaella
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F pezzelle-etal-2017-precise
%X People can refer to quantities in a visual scene by using either exact cardinals (e.g. one, two, three) or natural language quantifiers (e.g. few, most, all). In humans, these two processes underlie fairly different cognitive and neural mechanisms. Inspired by this evidence, the present study proposes two models for learning the objective meaning of cardinals and quantifiers from visual scenes containing multiple objects. We show that a model capitalizing on a ‘fuzzy’ measure of similarity is effective for learning quantifiers, whereas the learning of exact cardinals is better accomplished when information about number is provided.
%U https://aclanthology.org/E17-2054/
%P 337-342
Markdown (Informal)
[Be Precise or Fuzzy: Learning the Meaning of Cardinals and Quantifiers from Vision](https://aclanthology.org/E17-2054/) (Pezzelle et al., EACL 2017)
ACL