@inproceedings{brychcin-kral-2017-unsupervised,
title = "Unsupervised Dialogue Act Induction using {G}aussian Mixtures",
author = "Brychc{\'\i}n, Tom{\'a}{\v{s}} and
Kr{\'a}l, Pavel",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2078",
pages = "485--490",
abstract = "This paper introduces a new unsupervised approach for dialogue act induction. Given the sequence of dialogue utterances, the task is to assign them the labels representing their function in the dialogue. Utterances are represented as real-valued vectors encoding their meaning. We model the dialogue as Hidden Markov model with emission probabilities estimated by Gaussian mixtures. We use Gibbs sampling for posterior inference. We present the results on the standard Switchboard-DAMSL corpus. Our algorithm achieves promising results compared with strong supervised baselines and outperforms other unsupervised algorithms.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brychcin-kral-2017-unsupervised">
<titleInfo>
<title>Unsupervised Dialogue Act Induction using Gaussian Mixtures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Brychcín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Král</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a new unsupervised approach for dialogue act induction. Given the sequence of dialogue utterances, the task is to assign them the labels representing their function in the dialogue. Utterances are represented as real-valued vectors encoding their meaning. We model the dialogue as Hidden Markov model with emission probabilities estimated by Gaussian mixtures. We use Gibbs sampling for posterior inference. We present the results on the standard Switchboard-DAMSL corpus. Our algorithm achieves promising results compared with strong supervised baselines and outperforms other unsupervised algorithms.</abstract>
<identifier type="citekey">brychcin-kral-2017-unsupervised</identifier>
<location>
<url>https://aclanthology.org/E17-2078</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>485</start>
<end>490</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Dialogue Act Induction using Gaussian Mixtures
%A Brychcín, Tomáš
%A Král, Pavel
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F brychcin-kral-2017-unsupervised
%X This paper introduces a new unsupervised approach for dialogue act induction. Given the sequence of dialogue utterances, the task is to assign them the labels representing their function in the dialogue. Utterances are represented as real-valued vectors encoding their meaning. We model the dialogue as Hidden Markov model with emission probabilities estimated by Gaussian mixtures. We use Gibbs sampling for posterior inference. We present the results on the standard Switchboard-DAMSL corpus. Our algorithm achieves promising results compared with strong supervised baselines and outperforms other unsupervised algorithms.
%U https://aclanthology.org/E17-2078
%P 485-490
Markdown (Informal)
[Unsupervised Dialogue Act Induction using Gaussian Mixtures](https://aclanthology.org/E17-2078) (Brychcín & Král, EACL 2017)
ACL
- Tomáš Brychcín and Pavel Král. 2017. Unsupervised Dialogue Act Induction using Gaussian Mixtures. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 485–490, Valencia, Spain. Association for Computational Linguistics.