@inproceedings{poliak-etal-2017-efficient,
title = "Efficient, Compositional, Order-sensitive n-gram Embeddings",
author = "Poliak, Adam and
Rastogi, Pushpendre and
Martin, M. Patrick and
Van Durme, Benjamin",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2081",
pages = "503--508",
abstract = "We propose ECO: a new way to generate embeddings for phrases that is Efficient, Compositional, and Order-sensitive. Our method creates decompositional embeddings for words offline and combines them to create new embeddings for phrases in real time. Unlike other approaches, ECO can create embeddings for phrases not seen during training. We evaluate ECO on supervised and unsupervised tasks and demonstrate that creating phrase embeddings that are sensitive to word order can help downstream tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poliak-etal-2017-efficient">
<titleInfo>
<title>Efficient, Compositional, Order-sensitive n-gram Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Poliak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpendre</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Patrick</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose ECO: a new way to generate embeddings for phrases that is Efficient, Compositional, and Order-sensitive. Our method creates decompositional embeddings for words offline and combines them to create new embeddings for phrases in real time. Unlike other approaches, ECO can create embeddings for phrases not seen during training. We evaluate ECO on supervised and unsupervised tasks and demonstrate that creating phrase embeddings that are sensitive to word order can help downstream tasks.</abstract>
<identifier type="citekey">poliak-etal-2017-efficient</identifier>
<location>
<url>https://aclanthology.org/E17-2081</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>503</start>
<end>508</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient, Compositional, Order-sensitive n-gram Embeddings
%A Poliak, Adam
%A Rastogi, Pushpendre
%A Martin, M. Patrick
%A Van Durme, Benjamin
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F poliak-etal-2017-efficient
%X We propose ECO: a new way to generate embeddings for phrases that is Efficient, Compositional, and Order-sensitive. Our method creates decompositional embeddings for words offline and combines them to create new embeddings for phrases in real time. Unlike other approaches, ECO can create embeddings for phrases not seen during training. We evaluate ECO on supervised and unsupervised tasks and demonstrate that creating phrase embeddings that are sensitive to word order can help downstream tasks.
%U https://aclanthology.org/E17-2081
%P 503-508
Markdown (Informal)
[Efficient, Compositional, Order-sensitive n-gram Embeddings](https://aclanthology.org/E17-2081) (Poliak et al., EACL 2017)
ACL
- Adam Poliak, Pushpendre Rastogi, M. Patrick Martin, and Benjamin Van Durme. 2017. Efficient, Compositional, Order-sensitive n-gram Embeddings. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 503–508, Valencia, Spain. Association for Computational Linguistics.