@inproceedings{karn-etal-2017-end,
title = "End-to-End Trainable Attentive Decoder for Hierarchical Entity Classification",
author = {Karn, Sanjeev and
Waltinger, Ulli and
Sch{\"u}tze, Hinrich},
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2119",
pages = "752--758",
abstract = "We address fine-grained entity classification and propose a novel attention-based recurrent neural network (RNN) encoder-decoder that generates paths in the type hierarchy and can be trained end-to-end. We show that our model performs better on fine-grained entity classification than prior work that relies on flat or local classifiers that do not directly model hierarchical structure.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karn-etal-2017-end">
<titleInfo>
<title>End-to-End Trainable Attentive Decoder for Hierarchical Entity Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanjeev</namePart>
<namePart type="family">Karn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulli</namePart>
<namePart type="family">Waltinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address fine-grained entity classification and propose a novel attention-based recurrent neural network (RNN) encoder-decoder that generates paths in the type hierarchy and can be trained end-to-end. We show that our model performs better on fine-grained entity classification than prior work that relies on flat or local classifiers that do not directly model hierarchical structure.</abstract>
<identifier type="citekey">karn-etal-2017-end</identifier>
<location>
<url>https://aclanthology.org/E17-2119</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>752</start>
<end>758</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-End Trainable Attentive Decoder for Hierarchical Entity Classification
%A Karn, Sanjeev
%A Waltinger, Ulli
%A Schütze, Hinrich
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F karn-etal-2017-end
%X We address fine-grained entity classification and propose a novel attention-based recurrent neural network (RNN) encoder-decoder that generates paths in the type hierarchy and can be trained end-to-end. We show that our model performs better on fine-grained entity classification than prior work that relies on flat or local classifiers that do not directly model hierarchical structure.
%U https://aclanthology.org/E17-2119
%P 752-758
Markdown (Informal)
[End-to-End Trainable Attentive Decoder for Hierarchical Entity Classification](https://aclanthology.org/E17-2119) (Karn et al., EACL 2017)
ACL