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ABSTRACT 

Island parsing is a powerful technique for 
parsing with Augmented ~ansition Networks (ATNs) 
which was developed and successfully applied in the 
HWIM speech understanding project. The HWIM 
application grammar did not, however, exploit Woods' 
original full ATN specification. This paper 
describes an island parsing interpreter based on 
HWIM, but containing substantial and important 
extensions to enable it to interpret any grammar 
which conforms to that full specification of 1970. 
The most important contributions have been to 
eliminate the need for prior specification of scope 

clauses, to provide more power by implementing LIFTR 
and SENDR actions within the island parsing 
framework, and to improve the efficiency of the 
techniques used to merge together partially-built 
islands within the utterance. 

This paper also presents some observations about 
island parsing, based on the use of the parser 
described, and some suggestions for future 
directions for island parsing research. 

I INTRODUCTION 

A. Island Parsing 

In an ordinary ATN parser, the parsing of a 
sentence is performed unidirectionally (normally 
left-to-right); the parser traverses each arc in the 
directed graph of the grammar in the same direction, 
starting from the initial state. 

An island ATN parser, on the other hand, can start 
at any point in the transition network with a word 
match from anywhere in the input string, not just at 
the left end, and parse the rest of the string 
working outwards to the left and right, adding words 
to each end of the 'island' formed. Indeed, any number 
of islands can be built, the parser merging the 
islands together as their boundaries meet. Clearly, 
in speech processing, island parsing is well suited 
to gearing sentence processing to the most solid 
inputs from the acoustic anal yser. 

The main problems with previous implementations 
of island parsing for ATNs have been with scope 
clauses and LIFTR and SENDR actions; essentially, 
these problems arise because in island parsing 
structure determination has to work from right-to- 

left as well as in the more usual left-to-right 
direction, i.e. against the normal parsing flow. 

B. Scope Clauses 

The ATN formalism provides for actions on the 
arcs of the network which can set and modify the 
contents of 'registers', and arbitrary tests on an 
arc to determine whether that arc is to be followed. 
In an island parser, an action or test is referred to 
as being context-sensitive when it either requires 
the value of a register that is set somewhere to the 
left, or changes the value of a register that is used 
somewhere also to the left. For each context 
sensitive action or test, there exists a set of 
states to its left such that the action can safely be 
performed if its execution is delayed until the 
parse has passed through one of these states. This 
list of states must be expressed, and in the HWIM 
system (Woods, 1976), this is done when writing the 
grammar by using a scope clause. The form of a scope 
clause is 

(SCOPE <scope specification> 
<list of context-sensltive actions>) 

where the scope specification is the list of 
precursor states. This requirement for prior 
specification of scope clauses clearly adds to the 
burden of the grammar writer. 

I have implemented a more satisfactory treatment 
of scope clauses. This is described belo~ following 
the discussion of LIFTR and SENDR actions, which 
require special handling in scoping. 

II LIFTR AND SENDR ACTIONS 

Two important actions (indeed it is difficult to 
write a grammar of any substantial subset of English 
without them) defined by Woods (1970), namely LIFTR 
and SENDR, present implementation difficulties in an 
island parsing interpreter. These actions were 
evidently excluded from the HWIM parser since there 
is no mention of them by Woods (1976). 

The action LIFTR can occur on any arc in the 
network, to transmit the value of a register up to 
the next higher level in the network, whereas SENDR 
can only occur on a PUSH arc, to transmit the value 
of a register down to a lower level. 
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A. LIFTR 

The same mechanism can be used to implement LIFTR 
actions as is used to transmit the result of each 
lower level computation up to the next higher level 
as the value of the special register '*'. 

However, LIFTR presents problems with scope 
clauses in an island parsing ATN interpreter: if an 
action 

(LIFTR <register> ...) 

occurs in a sub-network, any action using that 
register in any higher sub-network that PUSHes for 
the one containing the LIFTR must be scoped so that 
the action is not performed in a right-to-left parse 
at least until after the PUSH has been executed'. See 
figure I. 

I 

PUSH// 

action using <register> here must 
be scoped to before the PUSH arc 

$ 

\POP 

\ 
¢ 

(LIFTR <register> .) 

Figtre I. Scoping LIFTR actions. 

So, for example, when parsing English from right 
to left, tests that the verb and subject agree in 
person and number (if this information is carried in 
registers) must be postponed until the PUSH for the 
beginning of the subject noun phrase. Section III 
describes how my interpreter takes care of this 
scoping problem. 

B. SENDR 

I. Treatment of actions using SENDRed re~isters 

Since in a right-to-left parse, lower level sub- 
networks are traversed before the PUSH to them is 
performed, there is no way of knowing the value of a 
register that is being SENDRed at least until after 
the PUSH. Thus all actions involving registers whose 
values depend on the value of that register must he 
saved to be executed at the higher level. 

I have dealt with this by putting such actions 
into SCOPE clauses containing a special new scope 
specification, which I call scope SENDR. Actions with 
scope SENDR are never executed at the current level 
in the network, but are saved and incorporated into 
the next higher level subnetwork (possibly with a 
changed scope specification) during processing of 
the PUSH at that higher level, as follows:- 

(I) The form on the FOP arc to be returned as the 
value of the special register '*' on return to 
the next higher level is put into an explicit 

LIFTR action. 

(2) The scopes of all the saved actions are 
changed to the same as those of the SENDR 
actions on the PUSH arc. 

(3) All LIFTR actions are changed to highlvl-setr 
actions (see below). 

(q) Scoped calls to lowlvl-start and lowlvl- 
finish (see below) are put respectively 
before and after the saved actions. 

(5) All the SENDR actions on the PUSH arc are put 
in front of the lower level saved actions. 

The rest of the actions on the PUSH are are then 
processed as normal. The purposes of the actions 
lowlvl-start and lowlvl-finish are to respectively 
set up and restore a stack of register contexts 
(hold-regs), each level in the stack holding the 
register contents of one level in the network, with 
the base of the stack representing the highest level 
of saved actions. The action highlvl-setr performs a 
SETR at the next higher level of register contexts 
on the stack. 

2. An Example 

A typical sequence of actions in a fragment of an 
ATN network might be as in figure 2. 

\.----(SENDR regl 'nphrase) 
PUSH P~P with form 

\ (BUILDQI(NP +) reg2) 
/ 

¢ 
(SETR reg2 (GETR regl)) 

Fig~e 2. A typical fragment of a network. 

(SENDR regl 'nphrase) 

(lowlvl-start) 

(SETR reg2 (GETR regl))  

(highlvl -setr * (BUILDQ (NP +) reg2)) 

( lowlvl-  f inish) 

I 
r e g s :  ((regO pphrase)) 
lowlvl-regs : NIL 
hold-regs : NIL 

lowlvl-regs <- ((regl nphrase)) 

l hold-regs <- (((regO pphrase))) 
regs <- ((regl nphrase)) 
lowlvl-regs <- NIL 

regs <- ((reg2 nphrase) (regl nphrase)) 

hold-regs <- ( ( ( ,  (NP nphrase)) (regO pphrase))) 

~ regs <- ( ( ,  (NP nphrase)) (regO pphrase)) 
hold-regs <- NIL 

Figure 3. Treatment of SENDR actions. 
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This would be translated into the list of saved 
actions on the left of figure 3, and when control had 
passed through a set of states such that the actions' 
scope specifications were satisfied, execution would 
produce the sequence of operations shown on the 
right of the figure. 

3. Scope Problems 

As with LIFTR, SENDR actions need special scoping 
treatment: since there can be any type of interaction 
on a lower level between registers SENDRed and 
registers to be LIFTRed, the only safe execution time 
for actions using these registers and for actions 
referencing registers whose values depend on them 
(without engaging in full symbolic execution) is 
when the higher level sub-network has been fully 
traversed. There is a special scope specification 
for this- scope T. 

III AUTOMATIC SCOPE COMPUTATION 

The process of writing scope clauses into the 
grammar for an island parser is laborious, and 
therefore prone to error. The implementation 
described here can automatically detect all context- 
sensitive actions and tests and put them into scope 
clauses containing suitable (and usually optimal) 
scope specifications. Thus the parser can interpret 
straight off an ATN grammar that has been written 
for an ordinary left-to-right parser. 

The sooping algorithm consists of five passes 
over the grammar, the first four dealing with the 
exceptional scoping required by LIFTR and SENDR 
actions, and the fifth with the rest of the actions 
and tests in the network. Comments on the algorithm 
follow the necessarily technical account of it. 

A. The Scoping Algorithm 

The five passes of the scoping algorithm will now 
be described, actions and tests in the network being 
treated identically. 

I. Pass I 

Pass one takes care of the scoping problem with 
LIFTR actions mentioned in the previous section - 
that a register being LIFTRed must be scoped back at 
the higher level to at least before the PUSH arc. 

But if the register is used on the PUSH arc 
itself, the scoping algorithm should produce correct 
scope specifications without needing to treat this 
as a special case. Thus the solution I have adopted 
is for the algorithm to check whether the register 
appears on the PUSH arc, and i f  not, the dummy action 

(SETR <register> (GETR <register>)) 

is added to the actions on the PUSH arc. 

2. Pass 2 

The second pass finds, for each sub-network, the 
names of all the registers whose values depend on 
other registers (for use in the subsequent scoping 
passes). It does this by finding the registers used 
in each register-setting action (SETR, LIFTR, or 
SENDR), using knowledge of the register usage of each 
function used, and for each register which is not 
being assigned to, it appends onto the property-list 

of the register the name of the register being set in 
the current action, and a pointer to that register's 
property-list. 

Thus in the end, each register is associated with 
a list of all the registers in the sub-network which 

depend on the value of that register. 

3. Pass 3 

Pass three deals with scoping SENDR actions, 
giving them the treatment described at the end of 
the last section - it assigns the scope 
specification T to all actions which reference 
registers whose values depend on any of the 
registers used in actions on the same PUSH arc as a 
SENDR action. 

4. Pass 4 

Pass four finds all actions that use registers 
that have been passed down from a higher level by a 
SENDR, and also actions which use registers 
dependent on those SENDRed registers, giving the 
actions scope SENDR. 

5. Pass 5 

The rest of the scoping is performed in pass five. 
Each action is considered in turn, collecting the 
names of all registers it uses, and the names of 
those whose values depend on them. The scope 
specification is then computed depending on the 
common pert of all possible paths from the start of 
the current sub-network to any action which is 
dependent on the action under consideration. This 
list of states ('left-states') is the intersection of 
the states to the left of each action which uses any 
of the collected registers. 

The algorithm distinguishes the following four 
cases for the contents of 'left-states':- 

(1) If NIL - there are at least two non- 
intersecting paths from the left to the arc 
containing the action which reference 
registers dependent on those in the action, 
so return scope specification T. 

(2) All states in 'left-states' are in loops in 
the network - it is very difficult to compute 

the optimal scope specification, so return T 
(which will always be correct though perhaps 
not optimal). The problem with loops is that 
no register should be changed or referenced 
in a right-to-left parse until control has 

finally passed out of the loop. 
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(3) The left state of the arc containing the 
action being scopad is in 'left-states', and 
the state is not in a loop- all dependent 
actions are to the right of the arc, so return 
NIL. 

(4) Otherwise - return as scope specification a 
list of all states in 'left-states' that are 
not in loops. 

If an action does not use any registers, it 
obviously does not need scoping, and the algorithm 
bypasses it. If a scope specification is returned for 
an action that is already scoped, whether the new 
scope 'overwrites' the old one depends on what is 
already there:- 

scope SENDR overwrites scope T 
scope T overwrites scope <list of states> 
scope <list of states> is appended to an 

existing scope <list of states> 

B. Discussion of the Scoping Algorithm 

The algorithm does not produce totally optimal 
scope specifications in all circumstances: that is, 
actions may sometimes be scoped so they are saved 
for longer in the parse before they are executed 
than may strictly be necessary. The main shortcoming 
is in dealing with networks where there are two or 
more alternative separate paths containing actions 
using registers computed to be interdependent; for 
example in scoping the network fragment in figure 4, 

(NP/ 
(JUMP NP/DET T) 
(CAT NPR T 

(SETH noun (BUILDQ (npr *))) 
(TO NP/POP)) ) 

(NP/DET 
(CAT ADJ T ... (TO NP/DET)) 
(CAT NOUN T 

(SETH noun *) 
(TO NP/POP)) ) 

(NP/POP 
(POP ... ) ) 

Figure 4. Scoping with alternative paths. 

the two actions using register 'noun' are scoped 
(NP/) but the paths through them are independent and 
the register is not used elsewhere, so the actions do 
not need to be scoped at all. There does not seem to 
be any way around this problem by modifying the 
algorithm, but fortunately scope specifications that 
are not entirely optimal (as in this case) should 
only minimally affect the performance of the 
interpreter ~hen parsing a sentence. 

configtvations 'Sconfigs 'I at the boundaries of each 
island that are compatible, and then splice those 
that completely cover a sub-network into as many 
successively higher levels as possible (by calling 

Woods' 'Complete-right' function as many times as 
possible). In a real-time speech understanding 
system (depending on the strategy it employed), the 
time saved by this method could be critical to the 
success of the system. 

V OBSERVATIONS ON THE INTERPRETER IN USE 

The parser has been tested (Carroll, 1982) with 
various sized (purely syntactic) grammars, 
simulating speech processing by the arbitrary 
selection of one or more words in a typed string as 
parsing starting points, and the arbitrary addition 
of words to the left and right of these. 

It has been observed that the more complex the 
structure of the sentence being parsed, the more 
Sconfigs get generated, and consequently the longer 
the parse takes. There are, however, other less 
obvious factors influencing the number of Sconfigs 
generated. 

Saved Tes ts  

Seonfigs tend to proliferate embarrassingly when 
there are many possible paths of JUMP arcs between 
states on the same level of the grammar due to scoped 
tests having to be saved and not being immediately 
executable. 

If there are no BENDR actions down to the sub- 
network containing the JUMPs, then none of the saved 
tests will have to be carried up to a higher level, 
and so many of the Sconfigs will be filtered out when 
the POP arc st that level is processed. But if there 
are SENDR actions, the Sconfigs will not be filtered 
so effectively, will be carried up to higher levels, 
and at each higher level the number of Sconfigs will 
multiply. 

This Sconfig proliferation and resulting 
combinatorial explosion will always be associated 
with island parsing usinog large complex grammars 
that are purely syntactic~; unfortunately LIFTR and 
SENDR actions aggravate the problem. However, the 
utility of these actions more than outweighs the 
consequent decrease in parse-time efficiency. 

IV MERGING PARTIALLY BUILT ISLANDS 

In the HWIM system, to join together two adjacent 
islands to make one island covering them both, the 
smaller island was broken up and the words from it 
added onto the end of the larger. This obviously 
wastes all the effort expanded in building the 
smaller island. 

A more efficient method of joining two islands 
which I have implemented, is to merge all the segment 

I The state of the parse in an island parser is held 
as a list of segment configurations, each of which 
represents a partial parse covering one or more 
words in the utterance. 

2 It seems that the HWIM parser also encountered 
these problems; their solution was to employ 
semantic grammars, with a large number of WRD arcs, 
to use both syntactic and semantic categories on 
CAT arcs, and to expand the set of constituents 
pushed for to include "semantic constituents". 
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B. Differing Word-Orders 

Parsing the same sentence with differing orders 
of adding the words in it to islands usually results 
in differing numbers of Sconflgs being created. For 
example, two parses of the sentence 

JOHN IS EAGER TO PLEASE. 
gave the results:- 

run I run 2 

Sconfigs generated 388 182 
parse time (secs.) 1.77 1.08 

The difference was caused by the fact that in the 
first run, 'IS' was used as an initial island, setting 
up expectations for more possible distinct final 
sentence structures than in the second run, which 
started with the word 'PLEASE'. This difference in 
ex pectatlon status reflects the different 
structuring potential of the two words. 

VI SOME FUTURE DIRECTIONS FOR RESEARCH 

A~ Parsing Conjunctions 

Island parsing appears to offer a promising 
solution to the problem of parsing written as well 
as spoken sentences containing conjunctions; 
although the ATN formalism is quite powerful in 
expressing natural language grammars, it faces 
problems deal  ing with sentences c o n t a i n i n g  
conjunctions: (WRD AND ...) arcs need to be inserted 
almost everywhere since AND can conjoin any two 
constituents of the same type. Boguraev (1982) has 
suggested that this problem might be overcome by 
building islands at each conjunction and parsing 
outwards from them. 

ATN. For this reason,  restrictions might have to be 
placed on the ATN grammars used, but this requires 
further investigation. 
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B. Cascaded Island Parsers 

The nuisance of the combinatorial explosion of 
Sconfig numbers when using large complex grammars 
might be amenable to solution with cascaded island 
ATN interpreters 3 ; several island parsers could be 
put on top of each other, each having a separate 
domain of respon sib il ity and each passing up 
completed constituents to the next higher ATN. In his 
1980 paper, Woods explains how cascading gains the 
,,factoring,, advantage of allowing alternative 
configurations in the later stages of the cascade to 
share common processing in the earlier stages. This 
processing would otherwise have to be done 
independently - in the case of an island parser, 
producing duplicate Sconfigs which would contribute 
to a possible combinatorial explosion. 

SENDR actions might cause problems, however, if 
scoping due to them caused the actions intended to 
form complete constituents to be saved so that the 
actions would not be completely performed before the 
time came to pass the constituents up to the next 

3 The idea of cascading was first put forward by 
Woods (1980), but only in terms of ordinary left- 
to-right ATN parsers. 
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