
AN ISLAND PARSING INTERPRETER FOR THE FULL AUGMENTED
TRANSITION NETWORK FORMALISM

John & Carroll
University of Cambridge Computer Laboratory

Corn Exchange Street
Cambridge CB2 3QG

England

ABSTRACT

Island parsing is a powerful technique for
parsing with Augmented ~ansition Networks (ATNs)
which was developed and successfully applied in the
HWIM speech understanding project. The HWIM
application grammar did not, however, exploit Woods'
original full ATN specification. This paper
describes an island parsing interpreter based on
HWIM, but containing substantial and important
extensions to enable it to interpret any grammar
which conforms to that full specification of 1970.
The most important contributions have been to
eliminate the need for prior specification of scope

clauses, to provide more power by implementing LIFTR
and SENDR actions within the island parsing
framework, and to improve the efficiency of the
techniques used to merge together partially-built
islands within the utterance.

This paper also presents some observations about
island parsing, based on the use of the parser
described, and some suggestions for future
directions for island parsing research.

I INTRODUCTION

A. Island Parsing

In an ordinary ATN parser, the parsing of a
sentence is performed unidirectionally (normally
left-to-right); the parser traverses each arc in the
directed graph of the grammar in the same direction,
starting from the initial state.

An island ATN parser, on the other hand, can start
at any point in the transition network with a word
match from anywhere in the input string, not just at
the left end, and parse the rest of the string
working outwards to the left and right, adding words
to each end of the 'island' formed. Indeed, any number
of islands can be built, the parser merging the
islands together as their boundaries meet. Clearly,
in speech processing, island parsing is well suited
to gearing sentence processing to the most solid
inputs from the acoustic anal yser.

The main problems with previous implementations
of island parsing for ATNs have been with scope
clauses and LIFTR and SENDR actions; essentially,
these problems arise because in island parsing
structure determination has to work from right-to-

left as well as in the more usual left-to-right
direction, i.e. against the normal parsing flow.

B. Scope Clauses

The ATN formalism provides for actions on the
arcs of the network which can set and modify the
contents of 'registers', and arbitrary tests on an
arc to determine whether that arc is to be followed.
In an island parser, an action or test is referred to
as being context-sensitive when it either requires
the value of a register that is set somewhere to the
left, or changes the value of a register that is used
somewhere also to the left. For each context
sensitive action or test, there exists a set of
states to its left such that the action can safely be
performed if its execution is delayed until the
parse has passed through one of these states. This
list of states must be expressed, and in the HWIM
system (Woods, 1976), this is done when writing the
grammar by using a scope clause. The form of a scope
clause is

(SCOPE <scope specification>
<list of context-sensltive actions>)

where the scope specification is the list of
precursor states. This requirement for prior
specification of scope clauses clearly adds to the
burden of the grammar writer.

I have implemented a more satisfactory treatment
of scope clauses. This is described belo~ following
the discussion of LIFTR and SENDR actions, which
require special handling in scoping.

II LIFTR AND SENDR ACTIONS

Two important actions (indeed it is difficult to
write a grammar of any substantial subset of English
without them) defined by Woods (1970), namely LIFTR
and SENDR, present implementation difficulties in an
island parsing interpreter. These actions were
evidently excluded from the HWIM parser since there
is no mention of them by Woods (1976).

The action LIFTR can occur on any arc in the
network, to transmit the value of a register up to
the next higher level in the network, whereas SENDR
can only occur on a PUSH arc, to transmit the value
of a register down to a lower level.

101

A. LIFTR

The same mechanism can be used to implement LIFTR
actions as is used to transmit the result of each
lower level computation up to the next higher level
as the value of the special register '*'.

However, LIFTR presents problems with scope
clauses in an island parsing ATN interpreter: if an
action

(LIFTR <register> ...)

occurs in a sub-network, any action using that
register in any higher sub-network that PUSHes for
the one containing the LIFTR must be scoped so that
the action is not performed in a right-to-left parse
at least until after the PUSH has been executed'. See
figure I.

I

PUSH//

action using <register> here must
be scoped to before the PUSH arc

$

\POP

\
¢

(LIFTR <register> .)

Figtre I. Scoping LIFTR actions.

So, for example, when parsing English from right
to left, tests that the verb and subject agree in
person and number (if this information is carried in
registers) must be postponed until the PUSH for the
beginning of the subject noun phrase. Section III
describes how my interpreter takes care of this
scoping problem.

B. SENDR

I. Treatment of actions using SENDRed re~isters

Since in a right-to-left parse, lower level sub-
networks are traversed before the PUSH to them is
performed, there is no way of knowing the value of a
register that is being SENDRed at least until after
the PUSH. Thus all actions involving registers whose
values depend on the value of that register must he
saved to be executed at the higher level.

I have dealt with this by putting such actions
into SCOPE clauses containing a special new scope
specification, which I call scope SENDR. Actions with
scope SENDR are never executed at the current level
in the network, but are saved and incorporated into
the next higher level subnetwork (possibly with a
changed scope specification) during processing of
the PUSH at that higher level, as follows:-

(I) The form on the FOP arc to be returned as the
value of the special register '*' on return to
the next higher level is put into an explicit

LIFTR action.

(2) The scopes of all the saved actions are
changed to the same as those of the SENDR
actions on the PUSH arc.

(3) All LIFTR actions are changed to highlvl-setr
actions (see below).

(q) Scoped calls to lowlvl-start and lowlvl-
finish (see below) are put respectively
before and after the saved actions.

(5) All the SENDR actions on the PUSH arc are put
in front of the lower level saved actions.

The rest of the actions on the PUSH are are then
processed as normal. The purposes of the actions
lowlvl-start and lowlvl-finish are to respectively
set up and restore a stack of register contexts
(hold-regs), each level in the stack holding the
register contents of one level in the network, with
the base of the stack representing the highest level
of saved actions. The action highlvl-setr performs a
SETR at the next higher level of register contexts
on the stack.

2. An Example

A typical sequence of actions in a fragment of an
ATN network might be as in figure 2.

\.----(SENDR regl 'nphrase)
PUSH P~P with form

\ (BUILDQI(NP +) reg2)
/

¢
(SETR reg2 (GETR regl))

Fig~e 2. A typical fragment of a network.

(SENDR regl 'nphrase)

(lowlvl-start)

(SETR reg2 (GETR regl))

(highlvl -setr * (BUILDQ (NP +) reg2))

(lowlvl- f inish)

I
r e g s : ((regO pphrase))
lowlvl-regs : NIL
hold-regs : NIL

lowlvl-regs <- ((regl nphrase))

l hold-regs <- (((regO pphrase)))
regs <- ((regl nphrase))
lowlvl-regs <- NIL

regs <- ((reg2 nphrase) (regl nphrase))

hold-regs <- (((, (NP nphrase)) (regO pphrase)))

~ regs <- ((, (NP nphrase)) (regO pphrase))
hold-regs <- NIL

Figure 3. Treatment of SENDR actions.

102

This would be translated into the list of saved
actions on the left of figure 3, and when control had
passed through a set of states such that the actions'
scope specifications were satisfied, execution would
produce the sequence of operations shown on the
right of the figure.

3. Scope Problems

As with LIFTR, SENDR actions need special scoping
treatment: since there can be any type of interaction
on a lower level between registers SENDRed and
registers to be LIFTRed, the only safe execution time
for actions using these registers and for actions
referencing registers whose values depend on them
(without engaging in full symbolic execution) is
when the higher level sub-network has been fully
traversed. There is a special scope specification
for this- scope T.

III AUTOMATIC SCOPE COMPUTATION

The process of writing scope clauses into the
grammar for an island parser is laborious, and
therefore prone to error. The implementation
described here can automatically detect all context-
sensitive actions and tests and put them into scope
clauses containing suitable (and usually optimal)
scope specifications. Thus the parser can interpret
straight off an ATN grammar that has been written
for an ordinary left-to-right parser.

The sooping algorithm consists of five passes
over the grammar, the first four dealing with the
exceptional scoping required by LIFTR and SENDR
actions, and the fifth with the rest of the actions
and tests in the network. Comments on the algorithm
follow the necessarily technical account of it.

A. The Scoping Algorithm

The five passes of the scoping algorithm will now
be described, actions and tests in the network being
treated identically.

I. Pass I

Pass one takes care of the scoping problem with
LIFTR actions mentioned in the previous section -
that a register being LIFTRed must be scoped back at
the higher level to at least before the PUSH arc.

But if the register is used on the PUSH arc
itself, the scoping algorithm should produce correct
scope specifications without needing to treat this
as a special case. Thus the solution I have adopted
is for the algorithm to check whether the register
appears on the PUSH arc, and i f not, the dummy action

(SETR <register> (GETR <register>))

is added to the actions on the PUSH arc.

2. Pass 2

The second pass finds, for each sub-network, the
names of all the registers whose values depend on
other registers (for use in the subsequent scoping
passes). It does this by finding the registers used
in each register-setting action (SETR, LIFTR, or
SENDR), using knowledge of the register usage of each
function used, and for each register which is not
being assigned to, it appends onto the property-list

of the register the name of the register being set in
the current action, and a pointer to that register's
property-list.

Thus in the end, each register is associated with
a list of all the registers in the sub-network which

depend on the value of that register.

3. Pass 3

Pass three deals with scoping SENDR actions,
giving them the treatment described at the end of
the last section - it assigns the scope
specification T to all actions which reference
registers whose values depend on any of the
registers used in actions on the same PUSH arc as a
SENDR action.

4. Pass 4

Pass four finds all actions that use registers
that have been passed down from a higher level by a
SENDR, and also actions which use registers
dependent on those SENDRed registers, giving the
actions scope SENDR.

5. Pass 5

The rest of the scoping is performed in pass five.
Each action is considered in turn, collecting the
names of all registers it uses, and the names of
those whose values depend on them. The scope
specification is then computed depending on the
common pert of all possible paths from the start of
the current sub-network to any action which is
dependent on the action under consideration. This
list of states ('left-states') is the intersection of
the states to the left of each action which uses any
of the collected registers.

The algorithm distinguishes the following four
cases for the contents of 'left-states':-

(1) If NIL - there are at least two non-
intersecting paths from the left to the arc
containing the action which reference
registers dependent on those in the action,
so return scope specification T.

(2) All states in 'left-states' are in loops in
the network - it is very difficult to compute

the optimal scope specification, so return T
(which will always be correct though perhaps
not optimal). The problem with loops is that
no register should be changed or referenced
in a right-to-left parse until control has

finally passed out of the loop.

103

(3) The left state of the arc containing the
action being scopad is in 'left-states', and
the state is not in a loop- all dependent
actions are to the right of the arc, so return
NIL.

(4) Otherwise - return as scope specification a
list of all states in 'left-states' that are
not in loops.

If an action does not use any registers, it
obviously does not need scoping, and the algorithm
bypasses it. If a scope specification is returned for
an action that is already scoped, whether the new
scope 'overwrites' the old one depends on what is
already there:-

scope SENDR overwrites scope T
scope T overwrites scope <list of states>
scope <list of states> is appended to an

existing scope <list of states>

B. Discussion of the Scoping Algorithm

The algorithm does not produce totally optimal
scope specifications in all circumstances: that is,
actions may sometimes be scoped so they are saved
for longer in the parse before they are executed
than may strictly be necessary. The main shortcoming
is in dealing with networks where there are two or
more alternative separate paths containing actions
using registers computed to be interdependent; for
example in scoping the network fragment in figure 4,

(NP/
(JUMP NP/DET T)
(CAT NPR T

(SETH noun (BUILDQ (npr *)))
(TO NP/POP)))

(NP/DET
(CAT ADJ T ... (TO NP/DET))
(CAT NOUN T

(SETH noun *)
(TO NP/POP)))

(NP/POP
(POP ...))

Figure 4. Scoping with alternative paths.

the two actions using register 'noun' are scoped
(NP/) but the paths through them are independent and
the register is not used elsewhere, so the actions do
not need to be scoped at all. There does not seem to
be any way around this problem by modifying the
algorithm, but fortunately scope specifications that
are not entirely optimal (as in this case) should
only minimally affect the performance of the
interpreter ~hen parsing a sentence.

configtvations 'Sconfigs 'I at the boundaries of each
island that are compatible, and then splice those
that completely cover a sub-network into as many
successively higher levels as possible (by calling

Woods' 'Complete-right' function as many times as
possible). In a real-time speech understanding
system (depending on the strategy it employed), the
time saved by this method could be critical to the
success of the system.

V OBSERVATIONS ON THE INTERPRETER IN USE

The parser has been tested (Carroll, 1982) with
various sized (purely syntactic) grammars,
simulating speech processing by the arbitrary
selection of one or more words in a typed string as
parsing starting points, and the arbitrary addition
of words to the left and right of these.

It has been observed that the more complex the
structure of the sentence being parsed, the more
Sconfigs get generated, and consequently the longer
the parse takes. There are, however, other less
obvious factors influencing the number of Sconfigs
generated.

Saved Tes ts

Seonfigs tend to proliferate embarrassingly when
there are many possible paths of JUMP arcs between
states on the same level of the grammar due to scoped
tests having to be saved and not being immediately
executable.

If there are no BENDR actions down to the sub-
network containing the JUMPs, then none of the saved
tests will have to be carried up to a higher level,
and so many of the Sconfigs will be filtered out when
the POP arc st that level is processed. But if there
are SENDR actions, the Sconfigs will not be filtered
so effectively, will be carried up to higher levels,
and at each higher level the number of Sconfigs will
multiply.

This Sconfig proliferation and resulting
combinatorial explosion will always be associated
with island parsing usinog large complex grammars
that are purely syntactic~; unfortunately LIFTR and
SENDR actions aggravate the problem. However, the
utility of these actions more than outweighs the
consequent decrease in parse-time efficiency.

IV MERGING PARTIALLY BUILT ISLANDS

In the HWIM system, to join together two adjacent
islands to make one island covering them both, the
smaller island was broken up and the words from it
added onto the end of the larger. This obviously
wastes all the effort expanded in building the
smaller island.

A more efficient method of joining two islands
which I have implemented, is to merge all the segment

I The state of the parse in an island parser is held
as a list of segment configurations, each of which
represents a partial parse covering one or more
words in the utterance.

2 It seems that the HWIM parser also encountered
these problems; their solution was to employ
semantic grammars, with a large number of WRD arcs,
to use both syntactic and semantic categories on
CAT arcs, and to expand the set of constituents
pushed for to include "semantic constituents".

104

B. Differing Word-Orders

Parsing the same sentence with differing orders
of adding the words in it to islands usually results
in differing numbers of Sconflgs being created. For
example, two parses of the sentence

JOHN IS EAGER TO PLEASE.
gave the results:-

run I run 2

Sconfigs generated 388 182
parse time (secs.) 1.77 1.08

The difference was caused by the fact that in the
first run, 'IS' was used as an initial island, setting
up expectations for more possible distinct final
sentence structures than in the second run, which
started with the word 'PLEASE'. This difference in
ex pectatlon status reflects the different
structuring potential of the two words.

VI SOME FUTURE DIRECTIONS FOR RESEARCH

A~ Parsing Conjunctions

Island parsing appears to offer a promising
solution to the problem of parsing written as well
as spoken sentences containing conjunctions;
although the ATN formalism is quite powerful in
expressing natural language grammars, it faces
problems deal ing with sentences c o n t a i n i n g
conjunctions: (WRD AND ...) arcs need to be inserted
almost everywhere since AND can conjoin any two
constituents of the same type. Boguraev (1982) has
suggested that this problem might be overcome by
building islands at each conjunction and parsing
outwards from them.

ATN. For this reason, restrictions might have to be
placed on the ATN grammars used, but this requires
further investigation.

VII ACKNOWLEDGEMENTS

I would like to thank Bran Boguraev for his
guidance during the writing of the interpreter, and
for supplying the ATN grammars I have used. Thanks
also to Karen Sparck Jones and John Tait for their
comments on earlier drafts of this paper.

VIII REFERENCES

Boguraev, B. (1982) personal communication.

Carroll, J. (1982) "An Island Parsing Interpreter for
Augmented Transition Networks". University of
Cambridge Computer Laboratory Technical Report
No .33.

Woods, W. (1970) "Transition Network Grammars for
Natural Language Analysis". Communications of the
ACM, 13, 10, 591-606.

Woods, W. et al. (1976) ,,Parsers,' in "Speech
Understanding Systems". Bolt, Beranek and Newman Inc.
Report Ne.3438, Vol.4, 1-21.

Woods, W. (1980) "Cascaded ATN Grammars". American
Journal of Computational Linguistics, 6, I, 1-12.

B. Cascaded Island Parsers

The nuisance of the combinatorial explosion of
Sconfig numbers when using large complex grammars
might be amenable to solution with cascaded island
ATN interpreters 3 ; several island parsers could be
put on top of each other, each having a separate
domain of respon sib il ity and each passing up
completed constituents to the next higher ATN. In his
1980 paper, Woods explains how cascading gains the
,,factoring,, advantage of allowing alternative
configurations in the later stages of the cascade to
share common processing in the earlier stages. This
processing would otherwise have to be done
independently - in the case of an island parser,
producing duplicate Sconfigs which would contribute
to a possible combinatorial explosion.

SENDR actions might cause problems, however, if
scoping due to them caused the actions intended to
form complete constituents to be saved so that the
actions would not be completely performed before the
time came to pass the constituents up to the next

3 The idea of cascading was first put forward by
Woods (1980), but only in terms of ordinary left-
to-right ATN parsers.

105

