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Abstract  

We present an algorithm for the generation of 
sentences from the semantic representations of 
Unification Categorial Grammar. We discuss a 
variant of Shieber's semantic monotonicity 
requirement and its utility in our algorithm. We 
indicate how the algorithm may be extended to other 
grammars obeying the same requirement. Appendices 
contain a full listing of the program and a trace of 
execution of the algorithm. 

1. Introduction 

In this paper we present an algorithm for 
generating sentences using unification categorial 
grammars (UCGs, Zeevat et al. 1987) but which 
extends to any categorial grammar with unification 
(e.g., categorial unification grammars, Uszkoreit 
1986, Karttunen 1987). We relate the algorithm to 
proposals by Shieber (1988). Following Shieber, we 
address the basic generation problem; that is, given a 
syntactic category K and a semantic representation ~, 
generate every possible string def'med by the grammar 
of category K with a semantic representation that is 
logically equivalent to ~ .  In more concrete terms, 
this means that we dispense with any planning 
component and directly address the intrinsic 
complexity of the basic generation problem. The 
development of such algorithms is as fundamentally 
important as the corresponding work on parsing 
algorithms. 

We also discuss the properties of a semantic 
representation language (SRL) and the manner of its 
construction which makes our algorithm effective. 
The crucial property is a stricter form of Shieber's 
(1988) property of semantic monotonicity. We not 
only require that the semantics introduced by all 
subconstituents of an expression appear within the 
semantics of the expression as a whole; we also 
require that the semantics of any containing 
expression be a further instantiation of one of its 
subexpressions. 

We introduce the algorithm on a case-by-case 
basis, at each stage extending its coverage and include 
a listing of  the program implementing this 
algorithm, as appendix A. 

2. Basis of the algorithm 

The most important feature of categorial 
grammars is the close correspondence of syntactic and 
semantic ftmctors. In generation, if the semantic 
functor of an expression can be identified, possible 
values of the syntactic functor can also be determined. 
Under these circumstances, a simple recursive 
procedure can be stated which implements a mixed 
top-down and bottom-up strategy, alternately 
determining the functor of an expression and 
generating the arguments to that functor. In the 
presentation of the basic algorithm below we will 
make the simplifying assumption that for any 
formula of the semantic representation language, the 
syntactic and semantic functors are immediately 
identifiable. We will have to relax this restriction in 
order to deal with phenomena such as type raising and 
identity semantics. 

UCG employs only two types of phrase 
structure rules. First, there are two binary rules of 
forward and backward application. Schematically, 
these can be represented as follows. 

Result -~ Functor/Active Active 
Result --~ Active Functor\Active 

The first of the actual rules is stated below. 
The second is just like the first except that pre is 
substituted for post and the order of the daughters is 
reversed. Notice the use of the order feature. If a 
sign is an argument, then its order value is pre 
(post) if it precedes (follows) its functor. 
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I 
phonology: Wf+Wa] 
syntax: X | 
semantics: S | "-'> 
order: 0 J 

- phonology: Wf - 
[phonology: Wa] 

x, l sY ntax: Y / 
syntax: "~'| semantics: Sa [ 

[.order: post _1 
semantics: S 

- order: O 

phonology: Wa] 
syntax: Y l 
semanticsi Sa / 
order: post .! 

Second, UCG employs a small set of unary rules 
of the form a --> ~ where a and I~ are UCG signs. 
Unary rules have several uses. These include the 
treatment of unbounded dependencies, syntactic forms 
of type-raising (e.g., generic noun to np rules) and 
subcategorization for optional modifiers. In general, 
unary rules relate one category to another. In 
particular, unary rules can change the category of a 
functor. This will require a modification to the basic 
strategy we present below. 

The language InL (Indexed Language) is a 
variant of Kamp's (1981) Discourse Representation 
Theory. Its most important properties are i) every 
expression has a privileged variable (its index) and ii) 
every variable is sorted, so indicating the ontological 
category of the object denoted by the variable. The 
only logical connectives are conjunction and 
implication. The semantics of an expression is 
constructed compositionally via unification. As 
discussed further below, the semantic representation 
of any sentence in UCG is simply a further 
instantiation of the semantics associated lexically 
with one element of the sentence. 

3. A sketch of the algorithm 

Below we present the basic algorithm which 
implements the informal description given above. We 
give the algorithm in Prolog for convenience because 
various refinements to the algorithm to be discussed 
below (e.g., the use of a chart) depend directly on the 
procedural aspects of Prolog's control strategy. This 
basic version of the algorithm requires that UCG 
signs be encoded as first order terms and that term 
unification is used. This includes both InL formulas 
and sorted indices. A graph encoding of signs and 
graph unification could be used but this would make 
the presentation of the basic ideas more complicated. 
Unary rules are not covered in~ this first 
approximation. 

generate (Sign) :- 
path__value (semantics, Sign, InL), 
path value (semant ics, SignO, InL), 
lexical (SignO), 
reduce (SignO, Sign) . 

reduce (Sign, Sign) . 
reduce (Sign0, Sign) :- 

path value (syntax: active, Sign0, 
Active) , 

apply ( Sign0, Active, Result ), 
generate (Active), 
reduce (Result, Sign) . 

The predicate path_value(Path,Sign,Value) 
succeeds if the value of the path Path through the 
sign Sign is Value. lexicai(Sign) succeeds if the 
sign Sign can be unified with a lexical entry. 
apply(FunctorActive,ResulO implements the rules 
of forward and backward functional application as 
discussed above. 

generate(Sign) generates a sign Sign with 
phonology ~ ,  syntactic category K and semantics Z 
by creating a new sign SignO with phonology ~', 
syntactic category K' and semantics Z, unifying the 
sign with a lexical entry and then reducing SignO to 
Sign in a bottom-up fashion. Thus generate 
implements the top-down half of the control strategy 
by "predicting" the syntactic category of Sign on the 
basis of which lexical entries unify with it. The 
bottom-up reduction is necessary as it is not 
necessarily the case that • = ~' or that K = K'. In 
particular, unless ~. corresponds to a nonfunctor 
lexical entry, SignO will be of the schematic form 
X/Y (i.e., a lexical functor). 

reduce has two clauses. The first reduces a 
sign Sign to itself. The second reduces a sign SignO 
to a sign S i g n  if S i g n 0  is a functor 
Functor/Active which when applied to Active by 
one of the rules of functional application gives the 
result sign R e s u l t ,  the sign A c t i v e  can be 
generated and Result can be reduced to Sign. A 
sample execution of the algorithm, using only the 
above clauses for the two predicates, is given in 
Appendix B. 

There is a major deficiency in this algorithm. 
Unification is the only method used to test the 
logical equivalence of two semantic representations. 
This means that not even the axioms of 
commutativity or associativity are available for 
testing logical equivalence 1. One of the 

1Strictly speaking, we test for a very strict form 
of consistency. Two LFs are considered logically 
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consequences of this is that, given a semantic 
representation ~b, it may not be possible to generate a 
sentence with semantic representation 0', where ~ and 
0' are logically equivalent. In fact, it may not be 
possible to generate any sentence even though there 
are sentences defined by the grammar which have 
semantic representations which are equivalent to ~b. 
So, for example, an semantic representation which is 
produced by parsing a nontopicalised sentence cannot 
be used to generate a topicalised sentence. 

Shieber (1988) claims that the problem of 
logical equivalence reduces to the knowledge 
representation problem. The claim is that there will 
be no full solution to this problem in the near future. 
To satisfy our definition of generation however, we 
must generate all sentences whose semantic 
representations are logically equivalent to the 
semantic representation being generated under the 
rules of inference and axioms of the semantic 
representation language. In the case of InL, the 
primary axioms are simply associativity and 
commutativity. However, these two axioms alone 
give the equivalence problem factorial complexity. 
We will discuss these issues below after we have 
introduced some refinements to the algorithm. 

4. Refinements to the basic algorithm 

The algorithm presented above is deficient in 
other respects. There are three other aspects of UCG 
analyses that are not covered. First, all Nl's are type- 
raised. The standard UCG analysis of non-lexieal NPs 
is adequately handled using the above definitions, as 
the resulting semantic structure contains information 
introduced by the determiner. On the other hand, a 
lexical NP such as Harry will bind a variable in the 
semantics of an expression indicating that the 
translation of Harry is a constant. However, no 
other semantic material will be introduced from 
which the need to generate a lexical NP could be 
inferred. This is remedied quite easily by adding the 
condition, to the second clause of reduce above, that 
the category of SignO is not np, and by adding the 
following clause to reduce: 

reduce(Sign0, Sign) :- 
path_value(category:active, 

Sign0, Active), 
path_value(category, Active, np), 
path_value(semantics, Active, 

Index), 
proper name(Index), 

equivalent if their sorted indices are consistent but the 
rest of the formula is logically equivalent. We return 
to this point briefly below. 

typeraise_np (Active, 
TypeRaisedNP ), 

apply (TypeRaisedNP, Sign0, 
Mother) , 

generate (TypeRaisedNP), 
reduce (Mother, Sign) . 

The most important part of the above def'mition 
is the restriction of the clause to the generation of 
elements which satisfy the predicate proper name; 
we assume this test to be appropriately defined 
according to the semantic representation language 
used. In our case, it is a simple test for instantiation. 
The predicate typeraise_np(Active, TypeRaisedNP) 
relates a non-type-raised to a type-raised NP. Note 
that in the call to generate, we attempt to generate 
from the constructed type-raised NP. The reasons for 
this are that lexical NPs have to be type-raised prior 
to the lexical lookup in gene ra t e  and that the 
argument to the type-raised NP is generated in exactly 
the same manner as other arguments. 

Two further problems are the treatment of unary 
rules and functors with what Shieber (1988) calls 
vestigial semantics, which we prefer to call identity 
semantics. The latter identify the semantics of their 
argument with their own semantics. That is, they are 
semantically vacuous. Examples from English are 
complementisers and case-marking prepositions. 
Again, we add an additional clause to reduce which 
enumerates the set of relations that may hold between 
signs under unary rules and under functors with 
identity semantics, using the auxiliary predicate 
transform. The clause re.cursively invokes reduce 
as it may be the case that a unary rule or functor 
with identity semantics introduces further syntactic 
arguments. 

reduce (Sign0, Sign) :- 
transform(Sign0, Sign1), 
reduce (Sign1, Sign) . 

transform(Daughter, Mother) :- 
unary_rule(Mother, Daughter). 

transform(Sign0, Sign) :- 
path_value(category:active, 

Sign1, Sign0), 
identity(Sign1), 
apply(Sign1, Sign0, Sign). 

identity enumerates those lexical entries 
whose semantics is the same as that of one of its 
arguments. Note that both of these clauses continue 
the basic bottom-up reduction strategy. Essentially, 
we must freely apply both identity semantics functors 
and unary rules to guarantee completeness of the 
algorithm. Given that we apply unary rules and 
identity functors freely, our algorithm will only 
terminate if the bottom-up closure of such elements 
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with respect to elements of the lexicon is finite. In 
other words, we require that the grammar adhere to 
the offline parsability constraint (Kapland and 
Bresnan 1982). If this condition does not hold, the 
algorithm will not terminate. 

5. Optimizations of the algorithm 

Given the fairly high degree of top-down 
control, it should be obvious that the generator will 
generate some subformulas of its input repeatedly as 
it explores the search space. The obvious solution is 
to use a lemma table or chart (as discussed by Pereira 
and Warren 1984 and Shieber 1988). Shieber (1988) 
states that to guarantee completeness in using a 
precomputed entry in the chart, the entry must 
subsume the formula being generated top-down. 
However, empirical tests have shown that a naive 
chart strategy results in the chart never being used at 
all. This is to be expected given the nature of 
generation; since most of the signs being generated 
top-down are very partial (often they will have only 
the semantics instantiated) and chart entries will be 
very complete (since most information is projected 
from the lexicon) it will almost never be the case that 
a top-down sign is subsumed by the chart. 

The result is that we must either abandon the 
idea of using a chart I or else devise a strategy for its 
use which is complete, does not rely on the 
subsumption test and does not put too many entries 
in the chart We have followed the latter strategy. 
This technique depends crucially on avoiding any top- 
down instantiation of candidate chart entries and by 
guaranteeing bottom-up completeness of chart entries 
consistent with a restriction of the top-down sign. 
The nature of the restriction that we use depends on 
properties of the semantic representation language 
itself. In particular, the only use of variables in the 
language is in representing existentially quantified 
variables over individuals. Thus every appearance of a 
variable can only be further instanfiated by a semantic 
individual constant and so the semantic representation 
after generation cannot be further instantiated in such 
a way that the denotation of that expression differs 
from that of the input semantic representation. 

1A recent implementation of a similar 
algorithm by Thierry Guillotin and Agnes Plainfoss6 
(Personal communication) suggests that the top-down 
application of unary rules, while making it 
impossible to guarantee completeness if making use 
of a chart, nevertheless leads to an overall 
improvement in efficiency by limiting the search 
space engendered by unary rules. This supports the 
contention that unary rule application is the dominant 
cost in generation with UCG. 

The program presented in Appendix A 
illustrates the use of the chart. The reader will notice 
that the instruction to add information to the chart 
follows calls to genera te  but precedes calls to 
reduce. This strategy means that we keep the chart 
free of the top-down instantiations caused by equating 
a bottom-up solution (the first argument of reduce) 
to a top-down goal (the second argument of reduce). 

Another method for reducing the search space is 
to use the technique of freezing in cases where the 
premature instantiation of variables will lead to 
avoidable backtracking. In the case of our current 
UCG grammar, it is often the case that the order 
feature is not instantiated when apply is called. If 
the argument is generated before the phonology is 
instantiated, then unnecessary generations with the 
wrong word order can be prevented. Therefore, we 
freeze the value of the phonology and order attributes 
until after an argument is generated. This requires 
some care to ensure that the freezing interacts with 
the chart strategy correctly. This is illustrated in the 
full program listing below. It is to be expected that 
more complex grammars would benefit from an 
extension of this technique to other attributes with 
mut~j~lly dependent values. 

6. Extension to other grammatical  
formalisms 

We alluded above to our assumption about the 
relationship between the semantics of lexical and 
non-lexical expressions. To recap, any semantic 
representation is a further instantiation of the 
semantic representation of some lexical item. This 
assumption will not hold for any grammar in which 
semantic material is introduced by rule (i.e. 
syncategorematically). The reason for this should be 
obvious given the definition of generate above. If a 
particular semantic representation possibly contains 
semantic structure not present in the lexicon, then 
any attempt to find an appropriate lexical functor on 
the basis of the semantics of an expression is not 
guaranteed to succeed. Relaxing this assumption 
would effectively remove all top-down predictive 
capacity for generation. The only solution in the 
context of this algorithm would then be to allow top- 
down application of all rules and to delay calls to 
lexical lookup until after rule application. This 
generate and test strategy is not only likely to be 
inefficient, it will also result in non-termination for 
many grammars. 

In contrast, for grammars which do adhere to 
our assumption, our algorithm is effective, even if 
rules other than simple binary and unary rules are 
used. To see this, consider the following extension to 
reduce: 
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reduce(SignO, Sign) - -  

r u l e ( M o r n ,  SignO, Kids), 
generate_sisters (Kids) , 
reduce (Morn, Sign) . 

Note that this clause is very similar in 
structure to the second clause for reduce, the main 
difference being that the new clause makes fewer 
assumptions about the feature structures being 
manipulated, rule enumerates rules of the grammar, 
its first argument representing the mother 
constituent, its second the head daughter and its third 
a list of non-head daughters which are to be 
recurs ively generated by the predicate 
generate_sisters. (We assume, as with UCG, that 
information indicating the resulting phonology and 
order of constituents is contained within the feature 
structures of the rule). The behaviour of this clause is 
just like that of the clause for reduce w h i c h  
implements the UCG rules of function application. 
On the basis of the generated lexical sign SignO an 
application of the rule is hypothesised and we then 
attempt to prove that that rule application will lead to 
a new sign Morn which reduces to the original goal 
Sign. 

The same conditions apply to the generalized 
form of the predicate as to the clause for unary rules, 
namely the algorithm will terminate if the bottom-up 
closure of the rules of the grammar is finite. We 
conjecture that this algorithm extends naturally to the 
rules of composition, division and permutation of 
Combinatory Categorial Grammar (Steedman 1987) 
and the Lambek calculus (1958). 

7. Implementation 

The algorithm discussed in this paper has been 
implemented in C-Prolog. Recent work has looked at 
generation from semantic representations which are 
not in canonical format but which are equivalent, 
under the axioms of associativity and commutativity 
to the canonical semantics of sentences recognised by 
the grammar. Our effort is directed at formulating 
appropriate notions of "semicanonicality", which 
lessen the strict (and in many cases unobtainable) 
requirement that the representation to be generated 
from is identical to that obtained as the result of 
parsing. Such notions would increase the utility of 
generators such as we have presented while avoiding 
the dangers of factorial complexity. 

A further source of inefficiency is the naive 
lexical indexing strategy used by the predicate 
lexical. We have presented the algorithm as if 
iexical simply enumerates the lexicon. This is 

clearly inefficient and some form of indexing strategy 
seems essential. The simplest is to choose the 
principal functor of the semantic representation to use 
as the index for lexical entries which have the same 
principal functor in their semantics. Much of the 
time however, the principal functor is simply the 
conjunction operator. A more sophisticated indexing 
strategy involves calculating the best (set of) key(s) 
to identify candidate lexical entries. This necessarily 
involves considerable complexity itself. 
Furthermore, if such indexing is to be automatic, 
very sophisticated compilation techniques and 
metaknowledge about the possible structure of 
semantic representations are required. We are also 
investigating these possibilities. 
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Appendix A: program listing 

This listing contains all code discussed in the 
text for generation with UCG and includes a correct 
treatment of the chart. The second argument to 
generate is not discussed above: its function is 
simply to disable the check that determines whether 
to add information to the chart when that information 
has just been retrieved from the chart. 

/* generate/2 */ 
generate(Sign, chart) :- 

verify(unifies with chart(Sign)), 
unifies_with_chart(Sign). 

generate(Sign, nonchart) :- 
path_value(semantics, Sign, Sem), 
path value(semantics, Sign0, Sem), 
lexicon(Sign0), 
reduce(Sign0, Sign). 

!, 

/* reduce/2 */ 
reduce(Sign, Sign). 
reduce(Sign0, Sign) :- 

path_value(category:active, Sign0, 
Active), 

path value(category, Active, np), 
path_value(semantics, Active, Index), 
proper_name(Index), 
typeraise_np(Active, TypeRaisedNP), 
apply(TypeRaisedNP, Sign0, Mother, [], 

Freezer), 
generate(TypeRaisedNP, Chart), 
unfreeze(Freezer, I]), 
add to chart(TypeRaisedNP, Chart), 
reduce(Mother, Sign). 

reduce(Sign0, Sign) :- 
path value(category:active, Sign0, 

Active), 
pathvalue(category, Active, Category), 
not Category =np, not Category = pp, 
apply(Sign0, Active, Mother, [], 

Freezer), 
generate(Active, Chart), 
unfreeze(Freezer,[]), 
add to chart(Active, Chart), 
reduce(Mother, Sign). 

reduce(Sign0, Sign) :- 
transform(Sign0, Signl, [], Freezer), 
unfreeze(Freezer,[]), 
add to chart(Signl, nonchart), 
reduce(Signl, Sign). 

/*transform/4 */ 
transform(Daughter, Mother, Freezer, 

Freezer) :- 
unary_rule(Mother, [Daughter]). 

transform(Sign0, Sign, Freezer0, Freezer) 
:- 

path_value(category:active, Signl, 
Sign0), 

identity(Signl), 
apply(Signl, Sign0, Sign, Freezer0, 

Freezer). 

/* apply/5 */ 
apply(Sl, S2, S3, F0, 

[freeze(Order2,Phonology,WI,W2) IF0]) :- 
Sl = sign(Wi,Catl/S2,Seml,Order), 
$2 = sign(W2,Cat2, Sem2,Order2), 
S3 = sign(Phonology,Catl,Seml,Order). 

/* typeraise_np/2 */ 
typeraise_np(Sign0,Sign) :- 

Sign0 = sign(_,np,_,_), 
Sign = sign( ,Cat/ 

sign(_,Cat/ 
sign( ...... Order), 

Sem0, Order), 
Sem,_), 

Sign = sign( , 
/sign( , /Sign0, , ), 
~, ) • 

/* proper_name/l */ 
proper_name(N) :- nonvar(N) . 

/* unifies with chart/l */ 
unifies with chart(S) :- 

chart(S). 

/* add to chart/2 */ 
add to chart(S, nonchart) :- 

verify(unifies_with_chart(S)), 
add to chart(S, nonchart) :- 

assertz(chart(S)). 
add to chart(_, chart). 

! . 
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/*  unfreeze/2 */  
unfreeze([], []). 
unfreeze([freeze(pre,Wl+W2,WI,W2) IR],F) :- 

unfreeze(R,F). 
unfreezer([freeze(post,W2+Wi,WI,W2) [R],F) :- 

unfreeze(R,F). 

/*  verify/l */  
verify(Goal) :- \+ \+(Goal). 

Appendix B: A trace of program execution 

In this example, wc use only the first two 
clauses of reduce/2 above. Figure 1 gives a 
graphical representation of the information flow 
during generation, reduce(I) indicates a use of the 
first, base clause, and reduce(2) a use of the second. 
Circled numbers in the figure refer to the subsequent 
attribute value structures. We omit (8) and (13) as the 
corresponding feature structures are easily determined 
by inspection, corresponding to the base clause of 
reduce/2. 

Act ive  

l ex i con  

M o t h e r  

genera te  

lexicon 

Act ive  

reduce 
generate  

(1) 

l ex i con  

reduce (1) 
O:0uG 

Figure 1: A trace of execution for the sentence 

Every boy dreams 

rphon: w -] 
[cat: sent [ 

(1) [sem: s:lmp:[m:boy:[],e:dream:[m]][ 
Lorder: Order .I 
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['phon: W ] 
|eat: Cat 

(2) [sere: s:imp:[m:boy:[],e:dream:[m]] 
Lorder: Order 

(3) 

vP 
hon: every 

VPhon: Wf q 
/ r ph°n: Wall 

eat: np 
[ ea t :  Cat'Cat: Cat~ sem:m / / / X  
I / Lorder: o , , /  
J l s e m :  e:dream:tm] l 
I I-order: Oa _1 
| s e r e :  s: lmp:[m:boy:[],e:dream:[m]] 
'-- order: Of 

rphon: Wn 1 
/eat: noun / 

where X = |sem: m:boy:[]l  
Lorder: pre 3 

rphon: Wn 1 
leat: noun [ 

(4) [sere: m:boy:[]  / 
Lorder: pre l 

(5) 

vP hon: every+Wn 1 
FPhon: Wf q 
/ r ph°n: Well 

cat: np lcat: CatJeat: Cat sem: m / /  
I 1 L°rder: Oa// ' J I /sere: e:dre.m:l:m] / 
I I-order: Oa -J 

sem: s:lmp: [re:boy: [],e:dream: [m]] 
order: Of 

[-phon: Wn ] 
/eat: Cat I 

(6) isem: re:boy:i l l  
Lorder: Order 3 

rphon: boy ] 
/cat: noun l 

(7)/sem: m:boy:[ ] /  
Lorder: Order 3 

(9) I 
phon: Wf 3 

FP h°n: w q /  
lcat: np / /  

cat: Catlsem" m l |  
I.order: O a / ]  

sere: e:dream:[m] | 
order: Oa .J 

rphon: every+boy+Wf "1 
|cat: Cat J 

(10) |sere: s:|mp:[m:boy:[],e:dream:[m]][ 
Lorder: Of _1 

Fphon: Wf "1 
|cat: Cat | 

(11) |sere: e:dream:[m] I 
Lorder: Oa .J 

FPhon: dreams q 
| r phOn: W a l |  
[ Jcat: np / [  

o2) l°'t: sentqsem: in l /  
J Lorder:  preJJ 
lsem: e:dream:[In] | 
l-order: Oa _l 

rPhon: every+boy+dreams l 
.... /cat: sent l 
(14)/sere: s:imp:[m:boy:[],e:dream:[m]] / 

Lorder: Of 3 
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