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ABSTRACT 
This paper describes an algorithm for generat- 

ing quantifier scopings. The algorithm is designed to 
generate only logically non-redundant scopings and 
to partially order the scopings with a given :default 
scoping first. Removing logical redundancy is not 
only interesting per se, but also drastically reduces 
the processing time. The input and output formats 
are described through a few access and construc- 
tion functions. Thus, the algorithm is interesting for a 
modular linguistic theory, which is flexible with re- 
spect to syntactic and semantic framework. 

INTRODUCTION 
Natural language sentences like the notorious 

(1) Every man loves a woman, 

are usually regarded to be scope ambiguous. 
There have been two ways to attack this problem: 
To generate the most probable scoping and ignore 
the rest, or to generate all theoretically possible 
scopings. 

Choosing the first alternative is actually not a 
bad solution, since any sample piece of tex t usually 
contains few possibilities for (real) scope ambiguity, 
and since reasonable heuristics in most cases pick 
out the intended reading. However, there are cases 
which seem to be genuinely ambiguous, or where 
the selection of the intended reading requires exten- 
sive world knowledge. 

If the second alternative is chosen, there are 
basically two possible approaches: To integrate the 
generation of scopings into the grammar (like e.g. in 
Johnson and Kay (90) or Halvorsen and? Kaplan 
(88)), or to devise a procedure that generates the 
scopings from the parse output (like in Hobbs and 
Shieber (87)). In both cases, only structurally im- 
possible scopings are ruled out, like the reading of 

(2) Every representative o f  a company saw 
most samples 

in which "most samples" is outscoped by "every 
representative" but outscopes "a company" (Hobbs 
and Shieber (87)). 

Logically equivalent readings are not ruled out on 
either of these proposals. Hobbs and Shieber argue 
that 

"When we move beyond the two first- 
order quantifiers to deal with the so-called 
generalized quantifiers, such as "most", 
these logical redundancies become quite 
rare". 

Theoretically, they become rare. But it may 
very well be that sentences with several occur- 
rences of non-first-order generalized quantifiers are 
not very commonly used. On the other hand, sen- 
tences with several occurrences of existential or 
universal quantifiers may be quite common. What 
kinds of expressions that really resemble first-order 
quantifiers is of course a controversial question. But 
working natural language systems, with inference 
mechanisms that are based on f'trst-order logic, often 
have to simplify the interpretation process by inter- 
preting broad classes of expressions as plain univer- 
sal or existential quantifiers. Thus, the gain of gen- 
erating only non-equivalent scopings may be quite 
significant in practical systems. 

Ordering of  the scopings according to preference 
is also not treated on approaches like that of Hobbs 
& Shieber (87) or Johnson & Kay (90). Hobbs & 
Shieber (87) are quite aware of this, and give some 
suggestions on how to build ordering heuristics into 
the algorithm. On the approach of Johnson & Kay 
(90), scopings are generated with a DCG grammar 
augmented with procedure calls for "shuffling" and 
applying the quantifiers 1. The program will return 
new scopings by backtracking. Because of the re- 
cursive inside-out nature of the algorithm, it seems 
difficult to preserve generation-by-backtracking if 
one wants to order the scopings. 

IThe quantifier shuffling method is essentially the same as 
in Pereira & Shieber (87), but correctly avoids the 
"structurally impossible" seopings mentioned above. 
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Scope islands: In English, only existential quanti- 
tiers may be extracted out of relative clauses. 
Notice the difference between 

(3a) An owner of every company attended the 
meeting. 

(3b) A man who owns every company attended 
the meeting. 

A scoping algorithm must take this into account, 
since it will be very difficult to filter out such read- 
ings at a later stage. In the algorithm of Johnson & 
Kay (90), adding such a mechanism seems to be 
quite easy, since the shuffling and application of  
quantifiers are handled in the: grammar rules. In the 
algorithm of Hobbs & Shieber (87), it is a bit more 
difficult, since the language of the input forms does 
not distinguish between relative clauses and other 
kinds of NP modifiers. 

In general, any working scoping algorithm 
should meet as many linguistic constraints on scope 
generation as possible. 

Modularity: The main concern of Johnson & Kay 
(90) is to build a grammar that is independent of se- 
mantic formalism. This is done by a DCG grammar 
using "curly bracket notation" to include calls to 
formalism-dependent constructor functions. 

It is tempting to take this approach one step fur- 
ther, and let the generation Of scopings be: indepen- 
dent on both the syntactic and semantic theory cho- 
sen. 

A MODULAR APPROACH 
The algorithm I propose provides solutions to 

the four problems mentioned above simultaneously. 
It is an extension and generalisation of the algorithm 
presented in Vestre (87)2. 

In the following I will make the (commonly 
made) assumption that quantified formulas are 4- 
part objects. I will occasionally use a simple lan- 
guage of generalized quantifiers, where the formula 
format is 

DET(x,~(x .... ) , ¥ ( x  .... )) 

for determiners DET and formulas ~, ~.  D ET will 
be referred to as the determiner of the quantifier, x 
is its variable, ~ its restriction, and V is its scope. 
The term quantifier will usually refer to the deter- 
miner with variable and restriction. 

2This paper is in Norwegian, I'm afraid. An English 
overview of the work is included in Fenstad, Langholm and 
Vestre (89), but the details of the seoping algorithm are not 
described there. 

Treating quantifiers in this way, it is easy to rule 
• out the "structurally impossible" scopings men- 
tioned above because the formulas corresponding to 
the "impossible scopings" will contain free vari- 
ables. For instance, in sentence (2), the variable of 
"a company" (say, y) will also occur in the restrictor 
of "every representative". So in order to avoid an 
unbound occurrence of that variable, "a company" 
must either have wider scope than "every represen- 
tative" or be bound inside its restrictor. 

The algorithm presupposes that a few access 
functions are included for the type of input structure s 
used. Further, a:few constructor functions must be 
included to define the format of the logical forms 
generated. 

The role of  the main access function, get- 
quants, is to pick out the parts of the input structure 
that are quantifiers, and to return them as a list, 
where the list order gives the default quantification 
order. There are almost no limits to what kinds of 
input structures that may be used, but the quantifiers 
that are returned by the access functions must con- 
tain their restri0tors as a substructure. Of course, 
using input structures that already contain such lists 
of quantifiers as substructures will make the imple- 
mentation of get.-.quants almost trivial. 

In the following, I will give some rather informal 
descriptions of the main functions involved. The al- 
gorithm has been implemented in Common Lisp. 

AN OUTSIDE-IN ALGORITHM 
The usual way to generate scopings is to do it 

inside-out: Quantifiers of a subformula are either 
applied to the subformula or lifted to be applied at a 
higher level. 

On the approach presented here, generation is 
done outside-ini i.e. by first choosing the outermost 
quantifier of the formula to be generated. The moti- 
vation behind this unorthodox move is rather prag- 
matic: It makes it possible, as we shall see below, to 
implement nonredundancy and sorting in an easy 
and understandable way. It is also easy to treat ex- 
amples like the following, presented by Hobbs & 
Shieher (87): 

(4) Every man:i know a child of has arrived 

where "a child of . . ."  cannot be scoped outside of 
"Every man", since it (presumably) contains a vari- 
able that "Every man" binds. Building formulas 
outside-in, it is trivial to check that a formula only 
contains variables that are already bound. 

3The input structure will typically be output from a parser. 
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There may be other good reasons for choosing 
an outside-in approach; e.g. if anaphora resolution is 
going to be integrated into the algorithm, or if scope 
generation is to be done incrementally: Usually, the 
first NP of a sentence contains the quantifier th~tt by 
default has the widest scope, so an outside-in algo- 
rithm is just the right match for an incremental 
parser. 

The outside-in generation works in this way: 

1. Select one of the quantifiers returned by 
get-quants. 

2. Generate all possible restrictions of this 
quantifier by recursively scoping the re- 
strictions. 

3. Recursively generate all possible scopes 
of the quantifier by applying the scoping 
function to the input structure with the 
selected quantifier (and thereby the 
quantifiers in its restriction) removed. 
Note that get-quants is called anew for 
each subscoping, but it will only find 
quantifiers which have not yet been :ap- 
plied. 

4. Finally, construct a set of formulas: by 
combining the quantifier with all the pos- 
sible restrictions and scopes. 

THE BASIC ALGORITHM 
I will not formulate a precise definition of  the al- 

gorithm in some formal programming language, but I 
will in the following give a half-formal clef'tuition of 
the main functions of the algorithm as it works in its 
basic version, i.e. with neither removal of logical re'- 
dundancy nor ordering of scopings integrated into 
the algorithm: 

The main function is scopings which takes an in. 
put form of (almos0 any format and returns a set of 
scoped formulas: 

scopings(form) = 

[ build-main(form) }, if form is quantifier free 

[ build-quant(q,r,s) I q ~ get-quants(form), 
r ~ scope-restrictions(q), 
s ¢ scopings(form(get-var(q)lq)) } 

otherwise 

where form(ge t -var(q) /q)  means f o r m  with get- 
vat(q) substituted for q. The purpose of this substi- 
tution is to mark the quantifier as "already bound" 
by replacing it with the variable it binds. The vari- 
able is then used by build-main in the main formula. 

The function scope-restrictions is defined by 

scope-restrictions( quant ) = 

combine-restrictions({ scopings(r) : 
r ~ get-restrictions(q)}) 

where the role of combine-restrictions is to combine 
scopings when there are several restrictions to a 
quantifier, e.g. both a relative clause and a preposi- 
tional phrase. Roughly, combine-restrictions works 
by using the application-deFined function build-con- 
junction to conjoin one element from each of the 
sets in its argument set. 

This is the whole algorithm in its most basic vet, 
sion 4, provided of course, that the functions build. 
main, build-quant, build-conjunction, get-quant& 
get-vat and get-restrictions are defined. These may 
be defined to fit almost any kind of input and output 
structure s 

REMOVING LOGICAL 
REDUNDANCY 

We now turn to the enhancements which are 
the main concern of this paper. We first look at the 
most important, the removal of logically redundant 
scopings. To give a precise formulation of the kind 
of logical redundancy that we want to avoid, we 
first need some definitions: 

Definition 

A determiner DET is scope-commutative 
if (for all suitable formulas) the following is 
equivalent: 

(1) DET(x, Rt(x), nET(y, R2(y), S(x, y))) 
(2) DET(y, R2(y), DET(x, Rt(x), S(x, y))) 

A determiner DET is restrictor-commuta- 
ave if (for all suitable formulas) the follow- 
hag is equivalent: 

(1) DET(x, Rl(x) & DET(y, R2(y), S2(x, y)), 
St(x)) 

(2) DET(y, R2(y), 
DET(x, Rl(x) & S2(x, y), St(x))) 

4In this basic version, the algorithm does exacdy what the 
algorithm of Hobbs & Shieber (87) does when "opaque 
operatm's" are left out. 

~In the actual Common Lisp implementation, substitution of  
variables for quantifiers is done by destructive list 
manipulation. This ~ s  that quanfifiers must be cons. 
ceils, and that the occurrence of  a quantifier in the list 
returned by get-quants(form) must share with the 
occurrence of  the same quantifier in form. 
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It is easily seen that both existential and univer- 
sal determiners are scope-commutative, and that 
existential, but not universal, determiners are re- 
strictor-commutative. In natural language, this 
means that e.g. A representative o f  a company ar- 
rived is not ambiguous, in contrast to Every repre- 
sentative of  every company arrived. Typical gen- 
eralized quantifiers like most are neither restrictor- 
commutative nor scope-commutative~. 

Since quantifiers are selected outsideAn, it is 
now easy to equip the algorithm with a mechanism 
to remove redundant scopings: 

If the surrounding quantifier had a scope- 
commutative determiner, quantifiers with 
the same determiner and which precede 
the surrounding quantifier in the default 
ordering are not selected. 

For example, this means that in Every man loves 
every woman, "every man"  has to be selected be- 
fore "every woman". The algorithm will also try 
"every woman" as the first quantifier, but will then 
discard that alternative because "every man" can- 
not be selected in the next step - it precedes "every 
woman" in the default ordering. For more complex 
sentences, this discarding may give a significant 
time saving, which will be discussed below. 

The algorithm also takes care of the restrictor- 
commutativity of existential determiners by using 
the same technique of comparing with the surround- 
ing quantifier when restrictions on quantifiers are re- 
cursively scoped. 

PARTIALLY ORDERING THE 
SCOPINGS 

Generating outside-in, one has a "global" view 
of the generation process, which may be an advan- 
tage when trying to integrate ordering of scoping 
according to preference into the algorithm. As an 
example, the implemented algorithm provides a very 
simple kind of  preference ordering: A scoping is 
considered "better" than another scoping ff the 
number of quantifiers occurring in a non-default 
position is lower. 

It is supposed that the input comes with a de- 
fault ordering, and that the application-specific func- 
tion get-quants takes care of this. This default order 
may reflect several heuristics for scope generation; 
e.g. that the of-complements of NPs usually take 

scope over the whole NP (and thus should be lifted 
by default). 

The trick is now to assign a "penalty" number to 
every sub-scoping. Every time several quantifiers 
can be chosen at a given step, the penalty is in- 
creased by 1 if aquantifier different from the default 
one is chosen. And every time a quantifier is cont 
structed, its penalty is set to the sum of the penalties 
of the restrictor and scope subformulas. Thus, the 
penalty counts the number of quantifier displace, 
ments (compared to the default scoping). The main 
function of the Common Lisp implementation thus 
looks like thisT: 

(defun scoplngs (form) 
(let (((]list (get-quants form))) 

(if qllst 
(prefer (use-quant (car qlist) form) 

(use-quants (cdr qllst) form)) 
(list (cons 0 (build-main form)))))) 

Here pre fer  is a function which increases the 
penalty of each Of the scopings in its second list, and 
calls merge-scopings on the two lists. Merge-scop- 
ings merges thetwo lists with the penalty as order- 
ing criterion. This function is used whenever needed 
by the algorithm, such that one never needs to re- 
order the scoping list. From the last function-call 
above, one can also see how the coding of penalties 
is done: Atomic formulas are marked with a zero in 
their car. This number is later removed, the penalty 
is always stored only in the car of the whole scoped 
formula. 

SCOPE OF RELATIVE CLAUSE 
QUANTIFIERS 

Whether it ,is a general constraint on English 
may be questionable, but at least for practical pur- 
poses it seems reasonable to assume that no other 
quantifiers than the existential quantifier may be 
extracted out o f  a relative clause. 

The algorithm makes it easy to implement such 
a constraint. Since the quantifiers that can be used 
at a given step are given by the application-defined 
function get-quants, it is easy for any implementa- 
tion of get .quants  to filter out all non-existential 
quantifiers when looking for quantifiers inside a rela- 
tive clause. Here some of the burden is put on the 
grammar:. The parts of the input structures that cor- 
respond to relative clauses must be marked to be 
distinguishable from e.g. PP complements'. 

61"o prove non-scope-commutativity of most, construct an 
actual example where Most men love most women holds, 
but Most women are loved by most men does not hold (with 
the default seopings)I 

7For clarity, the mechanism for removing logical redundancy 
is left out hero. 

SOne could also put all the burden on the grammar, if one 
wanted the structures to contain the quantifier list as a 
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T H E  N U M B E R  O F  S C O P I N G S  

Hobbs and Shieber (87) point out that just by 
avoiding those scopings that are structurally impos- 
sible, the number of scopings generated is signifi- 
cantly lower than n!. For the following sentence, the 
reduction is from 81 = 40320 to "only" 2988: 

(5) A representative o f  a department o f  a 
company gave a fr iend of  a director o f  a 
company a sample of  a product. 

Of course, the sentence has only one "real" 
scoping! Since the algorithm presented here avoids 
logical non-redundancy by looking at the default 
order already when a quantifier is selected for the 
generation of a subformula, the gain for sentences 
like (5) is Iremendous 9. 

The above suggests that complexity for scoping 
algorithms is a function of both the number of quan- 
tifiers in the input, and of the structure of the input. 
The highest number of scopings is obtained when 
the input contains n quantifiers, none of  which are 
contained in a restriction to one of  the others. An 
example of this is Most women give most men a 
f lower .  In such cases, no quantifier permutations 
can be sorted out on structural grounds, so the num- 
ber of scopings is n!. 

For more complex sentences, the picture is 
fairly complex. The easiest task is to look at the 
case where the lowest number of scopings are ob- 
tained (disregarding logical redundancy), when all 
quantifiers are nested inside each other, e.g. 

(6) Most representatives o f  most depart- 
ments o f  most companies of  most cities 
sighed. 

It is easy to see that if N is the function that 
counts the number of scopings in such a sentence, 
then 

n 

N(n) = EN(n - k)N (k - I ) 
kfl 

Here N(n - k)N (k - 1 ) is the number of sub- 
scopings generated if quantifier number k is selected 
as the outermost, the factors are the number of 

substructure. This seems difficult to do with a pure 
unification grammar, however. 

9Fx)r this particular sentence, the single seeping is 
generated in less than 1/200 of  the time required to 
generate the 2988 scopings of  the same sentence with 
'most '  substituted for 'a ' .  

scopings of the restriction and scope of that quanti- 
fier, respectively. Of course, N(0) = 1. 

It can be shown that t0 

(2n) t 
N(n) - nt(n + 1 ) ! 

Further, estimating by Stirlings formula for n/we get 
the following (rough) estimate: 

4 n Jr(n) (,;+ l 

The important observation here, is that that the 
number of scopings of the completely nested sen- 
tences no longer is of faculty order, but of"only" ex- 
ponential order. This gives us a mathematical con- 
f'm~nation of the suspicion that the number of scop, 
ings of such sentences is significantly lower than the 
number of permutations of quantifiers. For sen~ 
tences which contain two argument NPs and the 
rest of the quantifiers nested inside each of these, 
the number of scopings is also N(n). For sentences 
with three argument NPs, it is somewhat higher, but 
still of exponential order. 

C O M P U T A T I O N A L  C O M P L E X I T Y  
What is the optimal way to generate (an explicit 

representation of) the n! scopings of the worst case? 
The absolute lower bound of the time complexity: 
will necessarily be at least as bad as the lower 
bound on space complexity. And the absolute lower 
bound on space complexity is given by the size of an 
optimally structure-sharing direct representation of 
the n! scopings. Such a representation will only con~ 
tain one instance of each possible subscoping, but it 
has to contain all subscopings as substructures. This 
makes a total of n + n.(n-1)+. . .+n!  subscopings. 
Factoring out n!,  we get n!(1 + 1/1! + 1/2! 
+.. .+l/(n-1)!) .  Readers trained in elementary cab 
culus, will recognize the latter sum as the Taylor 
polynomial of degree n-1 around 0 of the exponential 
function, applied to argument 1, i.e. the sum con. 
verges to the number e. This means that the total 
number of subscopings - and hence the lower bound 
on space complexity - is of order n!. 

Without any structure-sharing, the number of 
subscopings generated will of course be n.n!. This is 
exactly what happens here: The algorithm pre, 
sented is O(n2.n!) in time and space (provided that 
no redundancy occurs). This estimate presupposes 
that get-quants is of order n in both time and space, 
even when less than n quantif iers are left 
(presumably this figure will be better for some ira- 

10See e.g. Jacobsen (51), p. 19. 

- 255 - 



plementations of get-quants). By comparison, the 
Hobbs & Shieber algorithm is O(n!), by using opti- 
mal structure sharing. 

Does this mean that the outside-in approach 
should be rejected? Note that we above only con- 
sidered the non-nested case. In the nested case, the 
algorithm presented here gains somewhat, while the 
Hobbs&Shieber algorithm loses somewhat. In both 
cases, scoping of restrictions has to be redone for 
every new application of the quantifier they restrict 
This means that in the general case, the Hobbs & 
Shieber algorithm no longer provides optimal struc- 
ture sharing, while the algorithm presented here 
provides a modest structure sharing. Now, both al- 
gorithms can of course be equipped with a hash 
table (or even a plain array) for storing sets of sub- 
scopings (by the qnantifiers left to be bound). This 
has been successfully tried out with the algorithm 
presented here. It brings the complexity down to the 
optimal: O(n!) in the worst :case, and similarly to 
O(4nn "3/2) in the completely nested ease. So, there 
is, at least in theory, nothing to be lost in efficiency 
by using an outside-in algorithm. 

THE SINGLE-SCOPING CASE 
What about the promised reduction of complex- 

ity due to redundancy checking? We consider the 
case where a sentence contains n un-nested exis- 
tential quantifiers. Then the complexity is given by 
the number of times the algorithm tries to generate a 
subscoping, multiplied by the complexity of get- 
quants. When quantifier number k is selected as the 
outermost, n-k quantifiers are left applicable in the 
resulting recursive call to the algorithm. Let S be the 
function that counts the number of subscopings 
considered. We have: 

n 

S(n) = 1 + E S ( n "  k) = 2 " -  1 
k = l  

Thus, in the single-scoping case the algorithm is 
O(n-2") for input with un-nested qnantifiers (and 
even lower for nested quantifiers). 

Although the savings will be somewhat less 
spectacular for sentences wiih more than 1 scoping, 
this nevertheless shows that removing logical redun- 
dancy not only is of its own right, but also gives a 
significant reduction of the complexity of the algo- 
rithm. 

MODULAR THEORIES OF 
LINGUISTICS 

The algorithm presented here is related to the 
work of Johnson & Kay (90) by its modular nature. 
As mentioned, the intcrfacel with the syntax (parse 

output) is through a small set of access functions 
(set-quants, get-restrictions, get-var, and quant- 
type) and the interface with the semantics (the out- 
put of the algorithm) is through a small set of con. 
structor functions (build-conjuction, build-main and 
build-quant). The implementation thus is a conve, 
nient "software glue" which allows a high degree of 
freedom in the choice of both syntactic and semantic 
framework. 

This approach is not as "nice" as that of 
Johnson & Kay (90) or Halvorsen & Kaplan (88), 
and may on such :grounds be rejected as a theory of 
the syntactic/semantic interface. But the question is 
whether it is possible to state any relationship be. 
tween syntax and semantics which satisfies my four 
initial requirements (non-redundancy, ordering, 
special treatment of sub-clauses and modularity), 
and which still is "beautiful" or "simple" according 
to some standard:, 
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