
Higher-order Linear Logic Programming
of Categorial Deduction

Glyn Morri l l
Secci6 d'Intel.lig~ncia Artificial

Departament de Llenguatges i Sistemes Inform~ttics
Universitat Polit~cnica de Catalunya

Pau Gargallo, 5
08028 Barcelona

morrill@lsi.upc.es

Abs t rac t
We show how categorial deduction can
be implemented in higher-order (lin-
ear) logic programming, thereby realis-
ing parsing as deduction for the associa-
tive and non-associative Lambek calculi.
This provides a method of solution to
the parsing problem of Lambek catego-
rial grammar applicable to a variety of
its extensions.

The present work deals with the parsing prob-
lem for Lambek calculus and its extensions as de-
veloped in, for example, Moortgat (1988), van
Benthem (1991), Moortgat and Morrill (1991),
Moortgat and Oehrle (1993), Morrill (1994b) and
Hepple (1995). Some previous approaches to pars-
ing Lambek grammar such as KSnig (1989), Hep-
pie (1990) and Hendriks (1993) have concentrated
on the possibilities of sequent proof normalisa-
tion. In P~oorda (1991), Moortgat (1992), Hea-
driks (1993) and Oehrle (1994) a strategy of un-
folding and labelling for proof net construction is
considered. We aim to show here how such unfold-
ing allows compilation into programs executable
by a version of SLD resolution, implementing cat-
egorial deduction in dynamic linear clauses. The
linearity resides in the use exactly once per word
token of each of the clauses compiled from lexi-
cal categorisations. By dynamic, it is meant that
clauses may be higher-order (they are hereditary
Harrop Horn clauses) so that clausal resolution in-
volves insertion in, as well as retraction from, the
resolution database; see Miller et al. (1991), and
Hodas and Miller (1994).

It is shown how a range of calculi can be
treated by dealing with the highest common fac-
tor of connectives as linear logical validity. The
prosodic (i.e. sublinear) aspects of word order
and hierarchical structure are encoded in labels,
in effect the term structure of quantified linear
logic. Compiling labels according to interpreta-
tions in groupoids provides a general method for
calculi with various structural properties and also
for multimodal hybrid formulations. Unification

must be carried out according to the structural
axioms but is limited to one-way matching, i.e.
one term is always ground. Furthermore, for the
particular case of associative Lambek calculus an
additional perspective of binary relational inter-
pretation allows an especially efficient coding in
which the span of expressions is represented in
such a way as to avoid the computation of unifiers
under associativity, and this can also be exploited
for non-associative calculus.

Higher-order linear logic programming has al-
ready been applied to natural language process-
ing in, for example, Hodas (1992) and Hodas
and Miller (1994), in work deriving from Pareschi
(1989) and Pareschi and Miller (1990). What we
show here is that such implementation can be re-
alised systematically, indeed by a mechanical com-
pilation, while grammars themselves are written
in higher level categorial grammar formalism.

Automated deduction for Lambek calculi is of
interest in its own right but solution of the parsing
problem for categorial logic allowing significant
linguistic coverage demands automated deduction
for more than just individual calculi. There is
a need for methods applying to whole classes of
systems in ways which are principled and power-
ful enough to support the further generalisations
that grammar development will demand. We aim
to indicate here how higher-order logic program-
ruing can provide for such a need.

After reviewing the "standard" approach, via
sequent proof normalisation, we outline the rel-
evant features of (linear) logic programming and
explain compilation and execution for associative
and non-associative calculi in terms of groupoid
and binary relational interpretations of categorial
connectives. We go on to briefly mention multi-
modal calculi for the binary connectives.

The parsing problem is usually construed as
the recovery of structural descriptions assigned
to strings by a grammar. In practice the inter-
est is in computing semantic forms implicit in the
structural descriptions, which are themselves usu-
ally implicit in the history of a derivation recog-
nising well-formedness of a string. This is true
in particular of compositional categorial architec-

133

tures and we shall focus on algorithms for showing
well-formedness. The further step to computing
semantics is unproblematic.

For the non-associative Lambek calculus N L of
Lambek (1961) we assume types freely generated
from a set of primitive types by binary (infix) op-
erators \ , / and o. A sequent comprises a succe-
dent type A and an antecedent configuration r
which is a binary bracketed list of one or more
types; we write F ::~ A. The notation F(A) here
refers to a configuration I" with a distinguished
subconfiguration A.

a. A =~ a id F =~ A A(A) =,. B (1)
,Cut

~ (r) ~ B

b. F =~ A A(B) =~ C [A, r] ~ B
\L \R

z~([r, A\B]) ~ c r =~ A\B

c . F =~ A A(B) ~ C [r, A] ~ B
./L ./R

&([B/A, r]) ~ c r =* B/A

d. r([A, B]) C r = A a B
oL oR

F(A.B) ~ C r, .A : , AoB

For the associative Lambek calculus L of Lambek
(1958) the types are the same. A sequent com-
prises a succedent type A and an antecedent con-
figuration F which is a list of one or more types;
again we write F =~ A.

a. A ~ A id r =~ A A (A) =~ B (2)
.Cut

~(r) ~ B

b. r ~ A A (B) ~ C A , F ~ B
.\L \R

A(r ,A \B) =~ C F =, A\B

C, r =~ A &(B) =*. C F,A ~ B
/L B/A/R A(B/A, r) ~ c r

d. F (A , B) = * C r ~ A A ~ B
• oL o R

F(AeB) ~ C r , A ~ A*B

Lambek showed Cut-elimination for both calculi,
i.e. every theorem has a Cut-free proof. Of the
remaining rules each instance of premises has ex-
actly one connective occurrence less than the cor-
responding conclusion so Cut-elimination shows
decidability through finite space Cut-free sequent
proof search from conclusions to premises. Lifting
is derivable in N L as follows:

A ~ A B =~ B (3)
\L

[A, A\B] =~ B

A # B/(A\B)/rt

It is also derivable in L; indeed all N L deriva-
tions are converted to L derivations by simply

erasing the brackets. But L-derivable composi-
tion depends essentially on associativity and is not
NL-derivable:

B ~ B C ~ C
\L

A=~ A B ,B\C=~ C
\L

A, A\B, B\C =~ C \R
A\B, B\C =~ A\C

(4)

Even amongst the Cut-free proofs however there
is still semantic equivalence under the Curry-
Howard rendering (van Benthem, 1983; see Mor-
rill, 1994b) and in this respect redundancy in
parsing as exhaustive proof search since distinct
lines of inference converge on common subprob-
lems. This derivational equivalence (or: "spuri-
ous ambiguity") betrays the permutabil i ty of cer-
tain rule applications. Thus two left rules may be
permutable: N/CN, CN, N\S :=~ S can be proved
by choosing to work on either connective first.
And left and right rules are permutable: N/CN,
CN =:~ S / (N\S)) may be proved by applying a left
rule first, or a right rule, (and the latter step then
further admits the two options of the first exam-
ple). Such non-determinism is not significant se-
mantically: the variants ha:ve the same readings;
the non-determinism in partit ioning by the binary
left rules in L is semantically significant, but still
a source of inefficiency in its backward chaining
"generate-and-test" incarnation. Another source
of derivational equivalence is that a complex id ax-
iom instance such as N\S =:~ N\S can be proved
either by a direct matching against the axiom
scheme, or by two rule applications. This is easily
solved by restricting id to atomic formulas. More
problematic are the permutabili ty of rule applica-
tions, the non-determinism of rules requiring split-
ting of configurations in L, and the need in N L to
hypothesise configuration structure a priori (such
hierarchical structure is not given by the input
to the parsing problem). It seems that only the
first of these difficulties can be overcome from a
Gentzen sequent perspective.

The situation regarding equivalence and rule or-
dering is solved, at least for L - { * L } , by sequent
proof normalisation (KSnig, 1989; Hepple, 1990;
Hendriks, 1993):

a. [-)-7 =*" A id* r,,[-Y],r~ ~ o (s)

rl,A,r [-B-] p"

A (r , ~ - ~) ~ c \L" r ~ \ R
c. r = ~ r ~ A (~ -])=~C r , A = ~ [B] , R

This involves firstly ordering right rules before
left rules reading from endsequent to axiom leaves

134

(so left rules only apply to sequents with atomic
succedents; this effects uniform proof; see Miller
et al., 1991), and secondly further demanding
successive unfolding of the same configuration
type ("focusing"). In the *-ed rules the succe-
dent is atomic. A necessary condition for suc-
cess is that an antecedent type is only selected
by P* if it yields the succedent a tom as its even-
tual range. Let us refer to (5) as [-L-]. [~] is
free of spurious ambiguity, and I-r. F ::~ A iff
I-[-~ F ::~ I-A-]. The focusing strategy breaks down

t - I

for .L: (V P / P P) / N , N . P P =~ VP requires switch-
ing between configuration types. It happens that
left occurrences of product are not motivated in
grammar , but more critically sequent proof nor-
malisation leaves the non-determinism of parti-
tioning, and offers no general method for multi-
modal extensions which may have complex and
interacting structural properties. To eliminate
the splitting problem we need some kind of repre-
sentation of configurations such that the domain
of functors need not be hypothesised and then
checked, but rather discovered by constraint prop-
agation. Such is the character of our trea.tment,
whereby parti t ioning is explored by unification in
the term structure of higher-order linear logic pio-
gramming, to which we now turn. By way of ori-
entation we review the (propositional) features of
clausal programming.

The first order case, naturally, corresponds to
Prolog. Let us assume a set A T O . / t 4 of atomic
formulas, 0-ary, 1-ary, etc., formula constructors
{' A . . . A "}hE{O,1,.,,} and a binary (infix) formula
constructor ,--. A sequent comprises an agenda
forlnula A and a database F which is a bag of
program clauses { B 1 , . . . , B , } m , n > 0 (subscript
m for multiset); we write F =:~ A. In BNF, the
set of agendas corresponding to the nonterminal
AG£.AfT)A and the set of program clauses corre-
sponding to the nonterminal T ' C £ S are defined by:

AG£.N'I)A ::= GOA£ A . . . A g O A £
PC£S ::= A T O M *-- AG£AfDA

(6)

For first order programlning the set CjO.A£ of
goals is defined by:

¢ O A £ ::= A T O M (7)

Then execution is guided by the following rules.

F, A :0 A ax (8)

I.e. the unit agenda is a consequence of any
database containing its atomic clause.

F , A ~ B1 A . . . A B n =¢"
B1 A . . . A B n A (9)
C~ A . . . A Cm .RES

F , A ,--- B1 A . . . A B , ~ A A C 1 A . . . A C r e

I.e. we can resolve the first goal on the agenda with

the head of a program clause and then continue
with the program as before and a new agenda
given by prefixing the program clause subagenda
to the rest of the original agenda (depth-first
search).

For the higher-order case agendas and program
clauses are defined as above, but the notion of
G O A £ on which they depend is generalised to in-
clude implications:

GOA£ ::= A T O M [~ O A £ , - p c £ s (lO)

And a "deduction theorem" rule of inference is
added:

F,B ~ A F =v (71 A. . . A C,, (11)
DT

r ==~ (A *-- B) AC~ A . . . A C m

I.e. we solve a higher-order goal first on the agenda
by adding its precondition to the database and
trying to prove its postcondition.

In linear logic programming the rules become
resource conscious; in this context we write ® for
the conjunction and o- for the implication:

A =¢. A ax (12)

I.e. an atomic agenda is a consequence of its unit
database: all program clauses must be "used up"
by the resolution rule:

F =v B1 ® . . . ® B , ® C 1 ® . . . ®C,,, (13)
.RES

F, Ao--B1 @ . . . ®B,, =~ A®C1 ® . . . ® C m

I.e. a program clause disappears from the database
once it is resolved upon: each is used exactly
once. The deduction theorem rule for higher-order
clauses also becomes sensitised to the employment
of antecedent contexts:

F,B ~ A A ~ C I @ . . . ® C m (14)
DT

F, A ~ (A o- B)®C~ ® . . . N C m

We shall motivate compilation into linear
clauses directly from simple algebraic models for
the calculi. In the case of L we have first inter-
pretation in semigroups (L, +) (i.e. sets L closed
under associative binary operations +; intuitively:
strings under concatenation). Relative to a model
each type A has an interpretation as a subset
D (A) of L. Given that primitive types are in-
terpreted as some such subsets, complex types re-
ceive their denotations by residualion as follows
(cf. e.g. Lambek, 1988):

D (A . B) = {s~+s2]sl E D(A) As2 E D(B)} (15)
D (A \ B) = { , I W ' e D (A) , s ' + s E D(B)}
D (B / A) = (slW' e D (A) , s + s ' E D(B)}

For the non-associative calculus we drop the con-
dition of associativity and interpret in arbi trary

135

groupoids (intuit ively: trees under adjunct ionl) .
Categorial type ass ignment s ta tements com-

prise a term ~ and a type A; we write a : A. Given
a set of lexical assignments, a phrasal assignment
is projected if and only if in every model satisfying
the lexical ass ignments the phrasal assignment is
also satisfied. A categorial sequent has a trans-
lation given by [• I into a linear sequent of type
assignments which can be safely read as predica-
tions. For L we have the following (N L preserves
input antecedent configurat ion in ou tpu t succe-
dent term structure) :

I B 0 , . . . , B . ~ A I = (16)
k0:B0 + k , : B~ + =~ k 0 + . . . + k , , : A -

Categorial type ass igmnent s ta tements are trans-
lated into linear logic according to the interpreta-
tion of types. The polar t ransla t ion functions are
identi ty funct ions on a tomic assignments; on com-
plex category predicates they are defined mutu-
ally as follows (for related unfolding, but for proof
nets, see Roorda , 1991; Moor tga t , 1992; Hendriks,
1993; and Oehrle, 1994); ~ indicates the polari ty
complementa ry to p:

a + 7 : B p o - o~: A "~ (17) a new variable/
~: A k B p constant as p -'1-/--

7 + a : B p o- a: A ~ c~ new variable/
./: B / A p constant as p + / -

Tile unfolding t ransformat ions have the same gen-
eral form for the positive (conf igura t ion/da tabase)
and negative (succedent /agenda) occurrences; the
polar i ty is used to indicate whether new symbols
introduced for quantified variables in the inter-
pretat ion clauses are metavariables (in italics) or
Skolem constants (in boldface); we shall see ex-
amples shortly. The program clauses and agenda
are read directly off the unfoldings, with the only
manipu la t ion being a flat tening of positive ilnpli-
cations into uncurried forln:

((x+ o -Y1-)o - . . .) o - Y , 7 ~> (18)
X + o - Y l - ® . . . ® Y £

(This means tha t ma tch ing against the head of a
clause and assembly of subgoals does not require
any recursion or res t ructur ing at runtilne.) We
shall also allow unit program clauses X o-- to be
abbrevia ted X.

Star t ing froln the initial da tabase and agenda,
a proof will be represented as a list of agendas,
avoiding the context repetit ion of sequent proofs
by indicat ing where the resolution rule retracts
from the da tabase (superscript coindexed over-
line), and where the deduct ion theorem rule adds
to it (subscript coindexat ion):

1Though N L with product is incomplete with re-
spect to finite trees as opposed to groupoids in general.

database F, A o- B1 ® . . . ® Bn "i (19)
agenda
i. A ® C 1 ® .. . ®C,~ RES
i+I . BI ® . . . ® B,, ® Cx ® . . . ® C,n

database r , Bi (20)
agenda
i. (A o - B) ® C I ® . . . ®C,,~ DT
i+1. A ® C I ® . . . ®C,n

The sharing of a Skolem constant between A and
B in (20) ensures tha t B can and mus t be used to
prove A so tha t a mechan i sm for the lazy spli t t ing
of contexts is effected. The te rmina t ion condit ion
is met by a unit agenda with its uni t database.

By way of i l lustration for L consider composi-
tion given the sequent t ransla t ion (21).

IA\B, B\C ~ A \ C I = (21)
k: AkB +, l: B \C + ~ k+l : AkC-

The a~ssignments are unfolded thus:

a+k: B o- a: A b+l: C o - b: B(22)

k: AkB + 1: BkC +

m + (k + l) : C o- m: A

k+l: AkC-

Then tile proof runs as follows.

database a+k: B o- a: A ~, (23)
b+l: C o - b : B ~,
In: A14

agenda
1. m + (k + l) : C o- m: A DT
2. m + (k + l) : C RES b = m + k
3. re+k: B RES a = m
4. m: A RES

Tile unification at lille 2 relies on associativity.
Note tha t unifications are all one-way, but even
one-way associative (=s t r ing) unification has ex-
pensive worst cases.

For N L the term labelling provides a clausal
implementa t ion with unification being non-
associative. Consider lifting:

IA ~ B/(A\B)I = k: A ~ k: B/(A\B)

a+l: B o- a: A

k+l: B o-- 1: A\B +

k: B/ (AkB)-

The proof is as follows.

database

(24)

(25)

k: A 3, (26)

a+l: B o-- a: A1 ~
agenda
1. k+l : B o - (a+l: B o- a: A) DT
2. k+l : B RES a = k
3. k: A RES

136

The simple one-way term unification is very fast
but it is unnatural from the point of view of pars-
ing that, as for the sequent approach, a hierarchi-
cal binary structure on the input string needs to
be posited before inference begins, and exhaustive
search would require all possibilities to be tried.
Later we shall see how hierarchical structure can
be discovered rather than conjectured by factoring
out horizontal structure.

Let us note here the relation to --[~. [~] applies
(working back fl'om the target sequent) right rules
before left rules. Here, when a higher-order goal
is found on the agenda its precondition is added
to the database by DT. This precedes applications
of the RES rule (hence the uniformity character)
which corresponds to the left sequent inferences.
It applies when the agenda goal is atomic and
picks out antecedent types which yields that a tom
(cf. the eventual range condition of [~]). Tile fo-
cusing character is eml)odied by creating in one
step the objective of seeking all the arguments of
all uncurried functor.

By way of further example consider the follow-
ing in L, with terms and types as indicated.

(a book from which) the references are missing (27)

the references are missing (28)

r: N m: ((S/(NkS))kS)/PP

=> r+m: S/PP

We have cornpilation for 'are missing' as in Fig-
ure 1 yielding (29).

I> (29)
b+(m+a): So--(b+k: So-- (c+k: So--c: N))®a: PP

And the succedent unfolds as follows:

(r+m)+l : S o-- 1: PP (30)

r+m: S / P P -

I> (r+m)+l : S o- 1: PP

Derivation is as in figure 2. The unification at line
2 relies on associativity and as always atomic goals
on the agenda are ground. But in general we have
to try subproofs for different unifiers, that is, we
effectively still have to guess partitioning for left
rules. We shall see that this is not necessary, and
that associative unification can be avoided.

There is a further problem which will be solved
in the same move. Unfolding of left products
would create two positive subfonnulas and thus
fall outside the scope of Horn clause programming.
However, the term-labelled implementat ion as it
has been given also fails for right products:

a: A- ® fl: B - (31)

7: A , B -
I = c~+fl?

The problem is that c~ and fl are not determin-
istically given by 7 at the "compile time" of un-
folding. The best we could manage seems to be to
try different partit ionings of 7 at execution time;
but even if this could work it would still amount
to trying different parti t ionings for *R as in the
sequent calculus: a source of non-determinism we
seek to reduce. This l imitation combines with the
other difficulties with groupoid labelling of worst
case of (even) one-way associative unification for
L, and the need for a priori hypothesis of non-
associative structure for NL.

The method of solution resides in looking at
an alternative model: the associative calculus has
relational algebraic models (van Benthem, 1991)
which interpret types as relations on some set V,
i.e. as sets of ordered pairs. Given denotations
for primitive types, those of compound types are
fixed as subsets of V x V by:

D (A k B) = {(v2,v3)lV(vl,v2) E D (A) , (32)
(v,, v3) E D(B)}

D (B / A) = {(vi,v:)lV(v2, v3) E D (A) ,
(v,, v3) C D(B)}

D (A . B) = {(v1,va)13v2,@1,v2) E D (A) &
(v~, va) E D(B)}

Points in V intuitively corresponds to string posi-
tions (as in definite clause grammars , and charts)
and ordered pairs to the vertices of substrings per-
taining to the categories to which they are as-
signed. This induces unfolding as follows:

i - k: B p o-- i - j: A ~ i new variable/ (33)
j - k: A \ B p constant as p + / - -

i - k: B p o-- j - k: A ~ k new variable/
i - . j : B / A p constant as p + / -

Furthermore right product (though still not non-
Horn left product) unfolding can be expressed:

i - j : A - ® j - k: B - (3 4)
.j new variable

i - k: A , B -

Composition is now treated as follows. Assume
sequent translation thus:

]A\B, B\C ::v A\CI = (35)
0 - 1: A\B +, 1 - 2 : BkC + => 0 - 2: A \ C -

The assignments are compiled as shown in (36).

i - 1: B o-- i - 0: A (36)

0 - 1: A \ B +

j - 2 : C o- j - 1: B 3 - 2 : C o- 3 - 0 : A

1 - 2: B k C + 0 - 2: A k C -

T h e proof is thus:

137

b-t-(nl+a): S

c+k: S o--

b+k: S o- k: N\S +

o- b: S/(N\S)-

c: N

r a t a : (S/(N\S))\S + o- a: PP

Figure 1:

database

agenda
1.
2.
3.
4.
5.
6.

Figure

m: ((S/(N\S))\S)/PP +

Groupoid compilation of the assignment to 'are missing'

r : --~5
2

b+(m+a): S o-- (b+k: S o- (c+k: S o-- c: N)) ® a: PP
1:PP1 ~,
c+k: So-c : Na 4,

(r+m)+l : S o- 1: PP DT
(r+m)+l : S RES b=r, a=l
(r+k: S o- (c+k: So-c : N))®I: PP DT
r+k: S ® 1: PP RES c=r
r : N ® I : P P RES
l: PP RES

2: Groupoid execution for ' the references are missing'

database i - 1: B o - i - 0: A 3, (37)
j - 2: C o - j - 1: B 2,
3 - O: A l 4

agenda
1. 3 - 2 : C o - 3 - 0 : A DT
2. 3 - 2 : C R E S j = 3
3. 3 - 1: B R E S i = 3
4. 3 - 0: A RES

In this way associative unification is avoided; in-
deed the only matching is trivial unification be-
tween constants and variables. So for L the rela-
tional compilation allows partitioning by the bi-
nary rules to be discovered by simple constraint
propagation rather than by the generate-and-test
strategy of normalised sequent proof.

Although the (one-way) term unification for
groupoid compilation of the non-associative cal-
culus is very fast we want to get round the fact
that a hierarchical binary structure on the input
string needs to be posited before inference begins.
We can do this through observation of the follow-
ing:

• All non-associative theorelns are associative
theorems (ignore brackets)

• Interpret non-associative operators in the
product algebra of N L groupoid algebra and
L relational algebra, and perform labelled
compilation accordingly

• Use the (efficient) relational labelling to check
associative validity

• Use the groupoid labelling to check non-
associative validity and compute the prosodic
form induced

I.e. the endsequent succedent groupoid term can

be left as a variable and the groupoid unification
performed on the return trip from axiom leaves af-
ter associative validity has been assured, as will be
seen in our final example. The groupoid unifica-
tion will now be one-way in the opposite direction.

The simultaneous compilation separates hori-
zontal structure (word order) represented by inter-
val segments, and horizontal-and-vertical struc-
ture (linear and hierarchical organisation) repre-
sented by groupoid terms, and uses the efficient
segment labelling to compute L-validity, and then
the term labelling both to check the stricter NL-
validity, and to calculate the hierarchical struc-
ture. In this way we use the fact that models for
NL are given by intersection in the product of re-
la.tional and groupoid models. Each type A has
an interpretation D (A) as a subset of L x V x V:

D (A \ B) = {(s,v~,v3)lV(s',vl,V~) • D(A), (38)
(s '+s, vl, v3) • D(B)}

D (B / A) = {/s,vl,v2)lV(s',v2,v3) • D(A) ,
(s+s' , vl , v3) • D(B)}

D (d . B) = {(s~+s2,v~,v3)lgv2,(s~,v~,v2) • D(A)
& (s2, v~, v3) • D(B)}

Unfolding is thus:

~r+7-i-k: B p o- o~-i-j: A F

7-j-k: A \ B p

(39)
c~, i new variables/
constants as p 4-/--

7+a'-i-k: B p (>- c~-j-k: A "~

7-i-j: B / A p

~, k new variables/
constants as p + / -

ol-i-j: A - ® [3-j-k: B -
a, B, j new variables

ot+B-i - k: A o B -

138

b+(m+a)-i-kl: S

c+k-l-4: S o- c-l-l: N

b+k-i-4: S o- k-l-4: NkS +

O - - b-i-l: S/(N\S)-

n!+a- l-k1: (S/(N\S))\S + o- a-2-kl : PP

m-l-2: ((S/(N\S))\S)/PP +

Figure 3: Groupoid-relational compilation of the assignment to 'are missing'

database r-0-1: N 4,
b+(m+a)-i-kl: S o-- (b+k-i-4: S o- (c+k-l-4: S o- c-l-l: N)) ® a-2-k~ : ppX,
c+k-/-4: So-c-l- l : N2 3,
f-2-3:pp5

agenda
1. d-0-3: S RES d = b+(m+a)
2. (b-Fk-0-4: S a-- (c+k-/-4: So-c-l- l : N))®a-2-3: PP DT
3. b+k-0-4: S ® a-2-3: PP RES b = c
4. c-0-1: N®a-2-3: PP RES c = r
5. a-2-3: PP RES a = f

Figure 4: Groupoid-relational execution for ' the references are missing from this book'

By way of example consider tile following:

the references are missing

r-O-l: N m-l-2: ((S/(N\S))\S)/PP

~+,7: B p o- a: A F a new variable/
(40) 7: A\iBP constant as p +/ - -

7+icr: B p o- o~: A F a new variable/

7 : B / i A p constant as p +/ - - from this book

f-2-3: PP =v d-0-3: S

Tile unfolding compilation yielding (41) for 'are
missing' is given in Figure 3.

I> (41)
b+(m+a)-i-kl : S o-
(b+k-i-4: S o- (c+k-l-4: So--c-l-l: N))®a-2-kl: PP

Tile derivation is given in Figure 4. Note how
the term unification computing the hierarchical
structure can be carried out one-way in the re-
verse order to the forward seglnent matchings:

d = b+(m+a) = c+(m+a) = r+(m+a) = (42)
r+ (m+ f)

In the case of NL-invalidity tile term unification
would fail.

We lnention finally lnultimodal generalisations.
In multimodal calculi families of connectives
{ / i , \ i , *i}ie{1 } are each defined by residua-
tion with respect to their adjunction in a "poly-
groupoid" (L, {+i}ie{] n}) (Moortgat and Mor-
rill, 1991):

D(At iB) = {s,+is2]s, E D (A) A s 2 E D(B)}(43)
D (A \ , B) = {sirs' ~ D(A) , s '+ , s E D(B)}
D (B / , A) = {s[Vs' E n (A) , s + , s ' E D(B)}

Multimodal groupoid compilation for ilnplications
is immediate:

(44)

This is entirely general. Any multimodal cal-
culus can be implemented this way provided we
have a (one-way) unification algorithm specialised
according to the structural communication ax-
ioms. For example Morrill (1993) deals with mul-
timodality for discontinuity which involves vary-
ing internal structural properties (associativity vs.
non-associativity) as well as "split/wrap" interac-
tion between modes. This is treated computa-
tionally in tile current manner in Morrill (19941)
which also considers head-oriented discontinuity
and unary operators projecting bracketed string
structure. Ill these cases also simultaneous com-
pilation including binary relational labelling can
provide additional advantages.

Labelled unfolding of categorial formulas has
been invoked ill the references cited as a way of
checking well-formedness of proof nets for catego-
rial calculi by unification of labels on linked for-
mulas. This offers improvements over sequent for-
mulations but raises alternative problems; for ex-
ample associative unification in general can have
infinite solutions and is undecidable. Taking lin-
ear validity as the highest common factor of sub-
linear categorial calculi we have been able to show
a strategy based on resolution in which the flow of
information is such that one term in unification is
always ground. Furthermore binary relational la-
belling propagates constraints in such a way that

139

computation of unifiers may be reduced to a sub-
set of cases or avoided altogether. Higher-order
coding allows emission of hypotheticals to be post-
poned until they are germane. Simultaneous com-
pilation allows a factoring out of horizontal struc-
ture from vertical structure within the sublinear
space in such a way that the partial information of
word order can drive computation of hierarchical
structure for the categorial parsing problem in the
presence of non-associativity. The treatments for
the calculi above and their multimodal generalisa-
tions have been implemented in Prolog (Morrill,
1994a).

R e f e r e n c e s

van Benthem, Johan: 1983, 'The Semantics of
Variety in Categorial Grammar', l~eport 83-29,
Department of Mathenlatics, Simon Fraser Uni-
versity, also in Buszkowski, W., W. Marciszewski,
and J. van Benthem (eds.): 1988, Calegorial
Grammar, Linguistic & Literary Studies in East-
ern Europe Volume 25, John Benjamins, Amster-
dam, 37-55.

van Benthem, J.: 1991, Language in Action:
Categories, Lambdas and Dynamic Logic, Studies
in Logic and the Foundations of Mathematics Vol-
ume 130, North-Holland, Amsterdam.

Hendriks, Herman: 1993, Studied Flexibility:
Categories and Types in Syntax and Semantics,
Ph.D dissertat.ion, Institute for Logic, Language
and Computation, Universiteit van Amsterdam.

Hepple, Mark: 1990, The Grammar and Pro-
cessing of Order and Dependency: A Categorial
Approach, Ph.D. dissertation, University of Edin-
burgh.

Hepple, Mark: 1995, 'Mixing Modes of Linguis-
tic Description in Categorial Grammar', this vol-
u l n e .

Hodas, J.: 1992, 'Specifying Filler-Gap De-
pendency Parsers in a Linear-Logic Programming
Language', in Proceedings of the Joint I~lterna-
tional Conference and Symposium on Logic Pro-
gramming, 622-636.

Hodas, Joshua and Dale Miller: 1994, 'Logic
Progrannning in a Fragment of Intuitionistic Lin-
ear Logic', to appear in Journal of IT~formation
and Computation.

Kgnig, E.: 1989, 'Parsing as natural deduction',
in Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, Vancouver.

Lambek, J.: 1958, 'The mathematics of sentence
structure', American Mathematical Monthly 65,
154-170, also in Buszkowski, W., W. Mar-
ciszewski, and J. van Benthem (eds.): 1988, Cate-
gorial Grammar, Linguistic & Literary Studies ill
Eastern Europe Volume 25, John Benjamins, Am-
sterdam, 153-172.

Lambek, J.: 1961, 'On the calculus of syntactic
types', in R. Jakobson (ed.) Structure of language
and its mathematical aspects, Proceedings of the
Symposia in Applied Mathematics XII, American
Mathematical Society, 166-178.

Lambek, J.: 1988, 'Categorial and Categorical
Grammars', in Richard T. Oehrle, Emmon Bach,
and Deidre Wheeler (eds.) Categorial Grammars
and Natural Language Structures, Studies in Lin-
guistics and Philosophy Volume 32, D. Reidel,
Dordrecht, 297-317.

Miller, D., G. Nadathur, F. Pfenning, and
A. Scedrov: 1991, 'Uniform Proofs as a Founda-
tion for Logic Programming', Annals of Pure and
Applied Logic 51, 125-157.

Moortgat, Michael: 1988, Categorial Investiga-
tions: Logical and Linguistic Aspects of the Lam-
bek Calculus, Forts, Dordrecht.

Moortgat, Michael: 1992, 'Labelled Deductive
Systems for categoriat theorem proving', OTS
Working Paper OTS-WP-CL-92-003, Rijksuni-
versiteit Utrecht, also in Proceedings of the Eighth
Amsterdam Colloquium, Institute for Language,
Logic and Information, Universiteit van Amster-
dam.

Moortgat, Michael and Glyn Morrill: 1991,
'Ileads and Phrases: Type Calculus for Depen-
dency and Constituent Structure', to appear in
Journal of Language, Logic, and Information.

Moortgat, Michael and Dick Oehrle: 1994, 'Ad-
jacency, dependency and order', in Proceedings of
the Ninth Amsterdam Colloquium, 447-466.

Morrill, Glyn: 1993, Discontinuity and Pied-
Piping in Categorial Grammar, Report de Re-
cerca LSI-93-18-R, Departament de Llenguatges
i Sistemes Inform~tics, Universitat Polit~cnica de
Catalunya, to appear in Linguistics and Philoso-
phy.

Morrill, Glyn: 1994a, 'Higher-Order Linear
Logic Programming of Categorial Deduction', Re-
port de Recerca LSI-94-42-R, Departament de
Llenguatges i Sistemes Inform£tics, Universitat
Polit~cnica de Catalunya

Morrill, Glyn: 1994b, Type Logical Grammar:
Categorial Logic of Sig~s, Kluwer Academic Pub-
lishers, Dordrecht.

Oehrle, Dick: 1994, 'Term labelled categorial
type systems', to appear in Linguistics and Phi-
losophy.

Pareschi, R.: 1989, Type-driven Natural Lan-
guage Analysis, Ph.D. thesis, University of Edin-
burgh.

Pareschi, R. and D, Miller: 1990, 'Extend-
ing Definite Clause Grammars with Scoping Con-
structs', in D.H.D. Warren and P. Szeredi (eds.)
1990 International Conference in Logic Program-
ruing, MIT Press, 373-389.

Roorda, Dirk: 1991, Resource Logics: proof-
theoretical investigations, Ph.D. dissertation, Uni-
versiteit van Amsterdam.

140

