
Exploring Speech-Enabled Dialogue with the Galaxy
Communicator Infrastructure

Samuel Bayer
The MITRE Corporation

 202 Burlington Rd.
Bedford, MA 01730

sam@mitre.org

Christine Doran
The MITRE Corporation

 202 Burlington Rd.
Bedford, MA 01730

cdoran@mitre.org

Bryan George
The MITRE Corporation
11493 Sunset Hills Rd.

Reston, VA 20190

bgeorge@mitre.org

ABSTRACT
This demonstration will motivate some of the significant
properties of the Galaxy Communicator Software Infrastructure
and show how they support the goals of the DARPA
Communicator program.

Keywords
Spoken dialogue, speech interfaces

1. INTRODUCTION
The DARPA Communicator program [1], now in its second
fiscal year, is intended to push the boundaries of speech-
enabled dialogue systems by enabling a freer interchange
between human and machine. A crucial enabling technology
for the DARPA Communicator program is the Galaxy
Communicator software infrastructure (GCSI), which provides
a common software platform for dialogue system development.
This infrastructure was initially designed and constructed by
MIT [2], and is now maintained and enhanced by the MITRE
Corporation. This demonstration will motivate some of the
significant properties of this infrastructure and show how they
support the goals of the DARPA Communicator program.

2. HIGHLIGHTED PROPERTIES
The GCSI is a distributed hub-and-spoke infrastructure which
allows the programmer to develop Communicator-compliant
servers in C, C++, Java, Python, or Allegro Common Lisp. This
system is based on message passing rather than CORBA- or
RPC-style APIs. The hub in this infrastructure supports
routing of messages consisting of key-value pairs, but also
supports logging and rule-based scripting. Such an
infrastructure has the following desirable properties:

• The scripting capabilities of the hub allow the
programmer to weave together servers which may not
otherwise have been intended to work together, by
rerouting messages and their responses and transforming

their keys.

• The scripting capabilities of the hub allow the
programmer to insert simple tools and filters to convert
data among formats.

• The scripting capabilities of the hub make it easy to
modify the message flow of control in real time.

• The scripting capabilities of the hub and the simplicity of
message passing make it simple to build up systems bit
by bit.

• The standard infrastructure allows the Communicator
program to develop platform- and programming-
language-independent service standards for recognition,
synthesis, and other better-understood resources.

• The standard infrastructure allows members of the
Communicator program to contribute generally useful
tools to other program participants.

This demonstration will illustrate a number of these
properties.

3. DEMO CONFIGURATION AND
CONTENT
By way of illustration, this demo will simulate a process of
assembling a Communicator-compliant system, while at the
same time exemplifying some of the more powerful aspects of
the infrastructure. The demonstration has three phases,
representing three successively more complex configuration
steps. We use a graphical display of the Communicator hub to
make it easy to see the behavior of this system.

As you can see in Figure 1, the hub is connected to eight
servers:

• MITRE's Java Desktop Audio Server (JDAS)

• MIT SUMMIT recognizer, using MIT's Mercury travel
domain language model

• CMU Sphinx recognizer, with a Communicator-compliant
wrapper written by the University of Colorado Center for
Spoken Language Research (CSLR), using CSLR's travel
domain language model

• A string conversion server, for managing
incompatibilities between recognizer output and
synthesizer input

• CSLR's concatenative Phrase TTS synthesizer, using their
travel domain voice

• CMU/Edinburgh Festival synthesizer, with a
Communicator-compliant wrapper written by CSLR, using
CMU's travel domain language model for Festival's
concatenative voice

• MIT TINA parser, using MIT's Mercury travel domain
language model

• MIT Genesis paraphraser, using MIT's Mercury travel
domain language model

Figure 1: Initial demo configuration

We will use the flexibility of the GCSI, and the hub scripting
language in particular, to change the path that messages follow
among these servers.

3.1 Phase 1
In phase 1, we establish audio connectivity. JDAS is MITRE's
contribution to the problem of reliable access to audio
resources. It is based on JavaSound 1.0 (distributed with JDK
1.3), and supports barge-in. We show the capabilities of JDAS
by having the system echo the speaker's input; we also
demonstrate the barge-in capabilities of JDAS bye showing
that the speaker can interrupt the playback with a new
utterance/input. The goal in building JDAS is that anyone who
has a desktop microphone and the Communicator
infrastructure will be able to use this audio server to establish
connectivity with any Communicator-compliant recognizer or
synthesizer.

3.2 Changing the message path
The hub maintains a number of information states. The
Communicator hub script which the developer writes can both
access and update these information states, and we can invoke
"programs" in the Communicator hub script by sending
messages to the hub. This demonstration exploits this
capability by using messages sent from the graphical display
to change the path that messages follow, as illustrated in
Figure 2. In phase 1, the hub script routed messages from JDAS
back to JDAS (enabled by the message named "Echo"). In the
next phase, we will change the path of messages from JDAS
and send them to a speech recognizer.

Figure 2: Modifying the hub information state

3.3 Phase 2
Now that we've established audio connectivity, we can add
recognition and synthesis. In this configuration, we will route
the output of the preferred recognizer to the preferred
synthesizer. When we change the path through the hub script
using the graphical display, the preferred servers are
highlighted. Figure 3 shows that the initial configuration of
phase 2 prefers SUMMIT and Festival.

Figure 3: Initial recognition/synthesis configuration

The SUMMIT recognizer and the Festival synthesizer were not
intended to work together; in fact, while there is a good deal of
activity in the area of establishing data standards for various
aspects of dialogue systems (cf. [3]), there are no
programming-language-independent service definitions for
speech. The hub scripting capability, however, allows these
tools to be incorporated into the same configuration and to
interact with each other. The remaining incompatibilities (for
instance, the differences in markup between the recognizer
output and the input the synthesizer expects) are addressed by
the string server, which can intervene between the recognizer
and synthesizer. So the GCSI makes it easy both to connect a
variety of tools to the hub and make them interoperate, as well
as to insert simple filters and processors to facilitate the
interoperation.

In addition to being able to send general messages to the hub,
the user can use the graphical display to send messages
associated with particular servers. So we can change the
preferred recognizer or synthesizer. (as shown in Figure 4), or
change the Festival voice (as shown in Figure 5). All these
messages are configurable from the hub script.

Figure 4: Preferring a recognizer

Figure 5: Changing the Festival voice

3.4 Phase 3
Now that we've established connectivity with recognition and
synthesis, we can add parsing and generation (or, in this case,
input paraphrase). Figure 6 illustrates the final configuration,
after changing recognizer and synthesizer preferences. In this
phase, the output of the recognizer is routed to the parser,
which produces a structure which is then paraphrased and then
sent to the synthesizer. So for instance, the user might say "I'd
like to fly to Tacoma", and after parsing and paraphrase, the
output from the synthesizer might be "A trip to Tacoma".

Figure 6: Adding parsing and paraphrase

4. CONCLUSION
The configuration at the end of phase 3 is obviously not a
complete dialogue system; this configuration is missing
context management and dialogue control, as well as an
application backend, as illustrated by the remaining
components in white in Figure 7. However, the purpose of the
demonstration is to illustrate the ease of plug-and-play
experiments within the GCSI, and the role of these capabilities
to assemble and debug a complex Communicator interface. The
GCSI is available under an open source license at
http://fofoca.mitre.org/download .

Figure 7: A sample full dialogue system configuration

5. ACKNOWLEDGMENTS
This work was funded by the DARPA Communicator program
under contract number DAAB07-99-C201. © 2001 The MITRE
Corporation. All rights reserved.

6. REFERENCES
[1] http://www.darpa.mil/ito/research/com/index.html.

[2] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and
V. Zue. Galaxy-II: A Reference Architecture for
Conversational System Development. Proc. ICSLP
98, Sydney, Australia, November 1998.

[3] "'Voice Browser' Activity." http://www.w3.org/Voice.

