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ABSTRACT
In collaboration with colleagues at UW, OGI, IBM, and SRI, we are
developing technology to process spoken language from informal
meetings. The work includes a substantial data collection and tran-
scription effort, and has required a nontrivial degree of infrastruc-
ture development. We are undertaking this because the new task
area provides a significant challenge to current HLT capabilities,
while offering the promise of a wide range of potential applica-
tions. In this paper, we give our vision of the task, the challenges it
represents, and the current state of our development, with particular
attention to automatic transcription.

1. THE TASK
We are primarily interested in the processing (transcription,

query, search, and structural representation) of audio recorded from
informal, natural, and even impromptu meetings. By “informal” we
mean conversations between friends and acquaintances that do not
have a strict protocol for the exchanges. By “natural” we mean
meetings that would have taken place regardless of the recording
process, and in acoustic circumstances that are typical for such
meetings. By “impromptu” we mean that the conversation may
take place without any preparation, so that we cannot require spe-
cial instrumentation to facilitate later speech processing (such as
close-talking or array microphones). A plausible image for such
situations is a handheld device (PDA, cell phone, digital recorder)
that is used when conversational partners agree that their discussion
should be recorded for later reference.

Given these interests, we have been recording and transcrib-
ing a series of meetings at ICSI. The recording room is one of
ICSI’s standard meeting rooms, and is instrumented with both
close-talking and distant microphones. Close-mic’d recordings
will support research on acoustic modeling, language modeling,
dialog modeling, etc., without having to immediately solve the
difficulties of far-field microphone speech recognition. The dis-
tant microphones are included to facilitate the study of these deep
acoustic problems, and to provide a closer match to the operating
conditions ultimately envisaged. These ambient signals are col-
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lected by 4 omnidirectional PZM table-mount microphones, plus
a “dummy” PDA that has two inexpensive microphone elements.
In addition to these 6 distant microphones, the audio setup permits
a maximum of 9 close-talking microphones to be simultaneously
recorded. A meeting recording infrastructure is also being put in
place at Columbia University, at SRI International, and by our col-
leagues at the University of Washington. Recordings from all sites
will be transcribed using standards evolved in discussions that also
involved IBM (who also have committed to assist in the transcrip-
tion task). Colleagues at NIST have been in contact with us to fur-
ther standardize these choices, since they intend to conduct related
collection efforts.

A segment from a typical discussion recorded at ICSI is included
below in order to give the reader a more concrete sense of the task.
Utterances on the same line separated by a slash indicate some de-
gree of overlapped speech.

A: Ok. So that means that for each utterance, .. we’ll need
the time marks.
E: Right. / A: the start and end of each utterance.
[a few turns omitted]
E: So we - maybe we should look at the um .. the tools that
Mississippi State has.
D: Yeah.
E: Because, I - I - I know that they published .. um .. annota-
tion tools.
A: Well, X-waves have some as well, .. but they’re pretty
low level .. They’re designed for uh - / D: phoneme / A: for
phoneme-level / D: transcriptions. Yeah.
J: I should -
A: Although, they also have a nice tool for - .. that could be
used for speaker change marking.
D: There’s a - there are - there’s a whole bunch of tools
J: Yes. / D: web page, where they have a listing. D: like 10
of them or something.
J: Are you speaking about Mississippi State per se? or
D: No no no, there’s some .. I mean, there just - there are -
there are a lot of / J: Yeah.
J: Actually, I wanted to mention - / D: (??)
J: There are two projects, which are .. international .. huge
projects focused on this kind of thing, actually .. one of
them’s MATE, one of them’s EAGLES .. and um.
D: Oh, EAGLES.
D: (??) / J: And both of them have
J: You know, I shou-, I know you know about the big book.
E: Yeah.
J: I think you got it as a prize or something.
E: Yeah. / D: Mhm.
J: Got a surprise. flaughg fJ. thought “as a prize” sounded
like “surprise”g

Note that interruptions are quite frequent; this is, in our expe-
rience, quite common in informal meetings, as is acoustic overlap



between speakers (see the section on error rates in overlap regions).

2. THE CHALLENGES
While having a searchable, annotatable record of impromptu

meetings would open a wide range of applications, there are sig-
nificant technical challenges to be met; it would not be far from the
truth to say that the problem of generating a full representation of a
meeting is “AI complete”, as well as “ASR complete”. We believe,
however, that our community can make useful progress on a range
of associated problems, including:

� ASR for very informal conversational speech, including the
common overlap problem.

� ASR from far-field microphones - handling the reverberation
and background noise that typically bedevil distant mics, as
well as the acoustic overlap that is more of a problem for
microphones that pick up several speakers at approximately
the same level.

� Segmentation and turn detection - recovering the different
speakers and turns, which also is more difficult with overlaps
and with distant microphones (although inter-microphone
timing cues can help here).

� Extracting nonlexical information such as speaker identifi-
cation and characterization, voice quality variation, prosody,
laughter, etc.

� Dialog abstraction - making high-level models of meet-
ing ‘state’; identifying roles among participants, classifying
meeting types, etc. [2].

� Dialog analysis - identification and characterization of fine-
scale linguistic and discourse phenomena [3][10].

� Information retrieval from errorful meeting transcriptions -
topic change detection, topic classification, and query match-
ing.

� Summarization of meeting content [14] - representation of
the meeting structure from various perspectives and at vari-
ous scales, and issues of navigation in thes representations.

� Energy and memory resource limitation issues that arise in
the robust processing of speech using portable devices [7].

Clearly we and others working in this area (e.g., [15]) are at an
early stage in this research. However, the remainder of this pa-
per will show that even a preliminary effort in recording, manually
transcribing, and recognizing data from natural meetings has pro-
vided some insight into at least a few of these problems.

3. DATA COLLECTION AND HUMAN
TRANSCRIPTION

Using the data collection setup described previously, we have
been recording technical meetings at ICSI. As of this writing we
have recorded 38 meetings for a total of 39 hours. Note that there
are separate microphones for each participant in addition to the 6
far-field microphones, and there can be as many as 15 open chan-
nels. Consequently the sound files comprise hundreds of hours of
recorded audio. The total number of participants in all meetings is
237, and there were 49 unique speakers. The majority of the meet-
ings recorded so far have either had a focus on “Meeting Recorder”

(that is, meetings by the group working on this technology) or “Ro-
bustness” (primarily concerned with ASR robustness to acoustic
effects such as additive noise). A smaller number of other meeting
types at ICSI were also included.

In addition to the spontaneous recordings, we asked meeting par-
ticipants to read digit strings taken from a TI digits test set. This
was done to facilitate research in far-field microphone ASR, since
we expect this to be quite challenging for the more unconstrained
case. At the start or end of each meeting, each participant read 20
digit strings.

Once the data collection was in progress, we developed a set of
procedures for our initial transcription. The transcripts are word-
level transcripts, with speaker identifier, and some additional in-
formation: overlaps, interrupted words, restarts, vocalized pauses,
backchannels, and contextual comments, and nonverbal events
(which are further subdivided into vocal types such as cough and
laugh, and nonvocal types such as door slams and clicks). Each
event is tied to the time line through use of a modified version of the
“Transcriber” interface (described below). This Transcriber win-
dow provides an editing space at the top of the screen (for adding
utterances, etc), and the wave form at the bottom, with mechanisms
for flexibly navigating through the audio recording, and listening
and re-listening to chunks of virtually any size the user wishes.

The typical process involves listening to a stretch of speech until
a natural break is found (e.g., a long pause when no one is speak-
ing). The transcriber separates that chunk from what precedes and
follows it by pressing the Return key. Then he or she enters the
speaker identifier and utterance in the top section of the screen.
The interface is efficient and easy to use, and results in an XML
representation of utterances (and other events) tied to time tags for
further processing.

The “Transcriber” interface [13] is a well-known tool for tran-
scription, which enables the user to link acoustic events to the wave
form. However, the official version is designed only for single-
channel audio. As noted previously, our application records up to
15 parallel sound tracks generated by as many as 9 speakers, and we
wanted to capture the start and end times of events on each channel
as precisely as possible and independently of one another across
channels. The need to switch between multiple audio channels to
clarify overlaps, and the need to display the time course of events
on independent channels required extending the “Transcriber” in-
terface in two ways. First, we added a menu that allows the user to
switch the playback between a number of audio files (which are all
assumed to be time synchronized). Secondly, we split the time-
linked display band into as many independent display bands as
there are channels (and/or independent layers of time-synchronized
annotation). Speech and other events on each of the bands can now
be time-linked to the wave form with complete freedom and totally
independently of the other bands. This enables much more precise
start and end times for acoustic events.

See [8] for links to screenshots of these extensions to Transcriber
(as well as to other updates about our project).

In the interests of maximal speed, accuracy and consistency, the
transcription conventions were chosen so as to be: quick to type,
related to standard literary conventions where possible (e.g., - for
interrupted word or thought, .. for pause, using standard orthogra-
phy rather than IPA), and minimalist (requiring no more decisions
by transcribers than absolutely necessary).

After practice with the conventions and the interface, transcribers
achieved a 12:1 ratio of transcription time to speech time. The
amount of time required for transcription of spoken language is
known to vary widely as a function of properties of the discourse
(amount of overlap, etc.), and amount of detailed encoding (prosod-



ics, etc.), with estimates ranging from 10:1 for word-level with
minimal added information to 20:1, for highly detailed discourse
transcriptions (see [4] for details).

In our case, transcribers encoded minimal added detail, but had
two additional demands: marking boundaries of time bins, and
switching between audio channels to clarify the many instances of
overlapping speech in our data. We speeded the marking of time
bins by providing them with an automatically segmented version
(described below) in which the segmenter provided a preliminary
set of speech/nonspeech labels. Transcribers indicated that the pre-
segmentation was correct sufficiently often that it saved them time.

After the transcribers finished, their work was edited for consis-
tency and completeness by a senior researcher. Editing involved
checking exhaustive listings of forms in the data, spell check-
ing, and use of scripts to identify and automatically encode cer-
tain distinctions (e.g., the distinction between vocalized nonverbal
events, such as cough, and nonvocalized nonverbal events, like door
slams). This step requires on average about 1:1 - one minute of
editing for each minute of speech.

Using these methods and tools, we have currently transcribed
about 12 hours out of our 39 hours of data. Other data have
been sent to IBM for a rough transcription using commercial tran-
scribers, to be followed by a more detailed process at ICSI. Once
this becomes a routine component of our process, we expect it to
significantly reduce the time requirements for transcription at ICSI.

4. AUTOMATIC TRANSCRIPTION
As a preliminary report on automatic word transcription, we

present results for six example meetings, totalling nearly 7 hours
of speech, 36 total speakers, and 15 unique speakers (since many
speakers participated in multiple meetings). Note that these re-
sults are preliminary only; we have not yet had a chance to address
the many obvious approaches that could improve performance. In
particular, in order to facilitate efforts in alignment, pronuncia-
tion modeling, language modeling, etc., we worked only with the
close-mic’d data. In most common applications of meeting tran-
scription (including those that are our chief targets in this research)
such a microphone arrangement may not be practical. Nevertheless
we hope the results using the close microphone data will illustrate
some basic observations we have made about meeting data and its
automatic transcription.

4.1 Recognition system
The recognizer was a stripped-down version of the large-

vocabulary conversational speech recognition system fielded by
SRI in the March 2000 Hub-5 evaluation [11]. The system per-
forms vocal-tract length normalization, feature normalization, and
speaker adaptation using all the speech collected on each chan-
nel (i.e., from one speaker, modulo cross-talk). The acous-
tic model consisted of gender-dependent, bottom-up clustered
(genonic) Gaussian mixtures. The Gaussian means are adapted by
a linear transform so as to maximize the likelihood of a phone-loop
model, an approach that is fast and does not require recognition
prior to adaptation. The adapted models are combined with a bi-
gram language model for decoding. We omitted more elaborate
adaptation, cross-word triphone modeling, and higher-order lan-
guage and duration models from the full SRI recognition system
as an expedient in our initial recognition experiments (the omitted
steps yield about a 20% relative error rate reduction on Hub-5 data).

It should be noted that both the acoustic models and the lan-
guage model of the recognizer were identical to those used in the
Hub-5 domain. In particular, the acoustic front-end assumes a tele-
phone channel, requiring us to downsample the wide-band signals

of the meeting recordings. The language model contained about
30,000 words and was trained on a combination of Switchboard,
CallHome English and Broadcast News data, but was not tuned for
or augmented by meeting data.

4.2 Speech segmentation
As noted above, we are initially focusing on recognition of the

individual channel data. Such data provide an upper bound on
recognition accuracy if speaker segmentation were perfect, and
constitute a logical first step for obtaining high quality forced align-
ments against which to evaluate performance for both near- and far-
field microphones. Individual channel recordings were partitioned
into “segments” of speech, based on a “mixed” signal (addition
of the individual channel data, after an overall energy equalization
factor per channel). Segment boundary times were determined ei-
ther by an automatic segmentation of the mixed signal followed by
hand-correction, or by hand-correction alone. For the automatic
case, the data was segmented with a speech/nonspeech detector
consisting of an extension of an approach using an ergodic hidden
Markov model (HMM) [1]. In this approach, the HMM consists
of two main states, one representing “speech” and one represent-
ing “nonspeech” and a number of intermediate states that are used
to model the time constraints of the transitions between the two
main states. In our extension, we are incorporating mixture den-
sities rather than single Gaussians. This appears to be useful for
the separation of foreground from background speech, which is a
serious problem in these data.

The algorithm described above was trained on the
speech/nonspeech segmentation provided manually for the
first meeting that was transcribed. It was used to provide segments
of speech for the manual transcribers, and later for the recognition
experiments. Currently, for simplicity and to debug the various
processing steps, these segments are synchronous across chan-
nels. However, we plan to move to segments based on separate
speech/nonspeech detection in each individual channel. The latter
approach should provide better recognition performance, since it
will eliminate cross-talk in segments in which one speaker may
say only a backchannel (e.g. “uhhuh”) while another speaker is
talking continuously.

Performance was scored for the spontaneous conversational por-
tions of the meetings only (i.e., the read digit strings referred to
earlier were excluded). Also, for this study we ran recognition only
on those segments during which a transcription was produced for
the particular speaker. This overestimates the accuracy of word
recognition, since any speech recognized in the “empty” segments
would constitute an error not counted here. However, adding the
empty regions would increase data load by a factor of about ten—
which was impractical for us at this stage. Note that the current
NIST Hub-5 (Switchboard) task is similar in this respect: data are
recorded on separated channels and only the speech regions of a
speaker are run, not the regions in which they are essentially silent.
We plan to run all speech (including these “empty” segments) in
future experiments, to better assess actual performance in a real
meeting task.

4.3 Recognition results and discussion
Overall error rates. Table 1 lists word error rates for the six

meetings, by speaker. The data are organized into two groups: na-
tive speakers and nonnative speakers. Since our recognition system
is not trained on nonnative speakers, we provide results only for the
native speakers; however the word counts are listed for all partici-



Table 1: Recognition performance by speaker and meeting (MRM = “Meeting Recorder meeting”; ROB = “Robustness meeting”).
Speaker gender is indicated by “M” or “F” in the speaker labels. “* : : : *” marks speakers using a lapel microphone; all other cases
used close-talking head-mounted microphones. “—” indicates speakers with severely degraded or missing signals due to incorrect
microphone usage. Word error rates are in boldface, total number of words in Roman, and out-of-vocabulary (OOV) rates in italics.
OOV rate is by token, relative to a Hub-5 language model. WER is for conversational speech sections of meetings only, and are not
reported for nonnative speakers.

Meeting MRM002 MRM003 MRM004 MRM005 ROB005 ROB004
Duration (minutes) 45 78 60 68 81 70
Native speakers

M 004 42.4 48.1 44.3 48.4 45.1
4550 3087 3432 4912 5512
2.07 2.75 1.60 2.12 1.61

M 001 42.4 50.6 37.6 38.6
2311 2488 1904 3400
1.82 2.09 2.78 1.56

F 001 45.2 43.2 42.9 41.9
3008 3360 2714 2705
2.59 3.18 4.05 2.14

M 009 *100.1* *115.8* 38.2 *68.7*
1122 367 1066 696
1.59 2.45 1.88 2.01

F 002 45.2 43.7 *46.0*
1549 1481 2480
2.26 2.64 1.63

M 002 *55.6*
990
2.12

Speakers with low word counts
M 007 55.6 —

198 69
2.97 2.90

M 008 72.7 59.5
55 121

5.45 5.79

M 015 —
59

6.56
Non-native speakers (total words only)

M 003 (British) 2189
M 011 (Spanish) 2653 1239 663
F 003 (Spanish) 620 220
M 010 (German) 28
M 012 (German) 639
M 006 (French) 3524 2648



pants for completeness.1

The main result to note from Table 1 is that overall word error
rates are not dramatically worse than for Switchboard-style data.
This is particularly impressive since, as described earlier, no meet-
ing data were used in training, and no modifications of the acoustic
or language models were made. The overall WER for native speak-
ers was 46.5%, or only about a 7% relative increase over a compa-
rable recognition system on Hub-5 telephone conversations. This
suggests that from the point of view of pronunciation and language
(as opposed to acoustic robustness, e.g., for distant microphones),
Switchboard may also be “ASR-complete”. That is, talkers may not
really speak in a more “sloppy” manner in meetings than they do in
casual phone conversation. We further investigate this claim in the
next section, by breaking down results by overlap versus nonover-
lap regions, by microphone type and by speaker.

Note that in some cases there were very few contributions from
a speaker (e.g., speakers M 007, M 008, and M 015), and such
speakers also tended to have higher word error rates. We initially
suspected the problem was a lack of sufficient data for speaker
adaptation; indeed the improvement from adaptation was less than
for other speakers. Thus for such speakers it would make sense to
pool data across meetings for repeat participants. However, in look-
ing at their word transcripts we noted that their utterances, while
few, tended to be dense with information content. That is, these
were not the speakers uttering “uhhuh” or short common phrases
(which are generally well modeled in the Switchboard recognizer)
but rather high-perplexity utterances that are generally harder to
recognize. Such speakers also tend to have a generally higher over-
all OOV rate than other speakers.

Error rates in overlap versus nonoverlap regions. As noted
in the previous section, the overall word error rate in our sam-
ple meetings was slightly higher than in Switchboard. An obvious
question to ask here is: what is the effect on recognition of over-
lapping speech? To address this question, we defined a crude mea-
sure of overlap. Since segments were channel-synchronous in these
meetings, a segment was either non-overlapping (only one speaker
was talking during that time segment), or overlapping (two or more
speakers were talking during the segment). Note that this does not
measure amount of overlap or number of overlapping speakers;
more sophisticated measures based on the phone backtrace from
forced alignment would provide a better measure for more detailed
analyses. Nevertheless, the crude measure provides a clear first
answer to our question. Since we were also interested in the inter-
action if any between overlap and microphone type, we computed
results separately for the head-mounted and lapel microphones. Re-
sults were also computed by speaker, since as shown earlier in Ta-
ble 1, speakers varied in word error rates, total words, and words by
microphone type. Note that speakers M 009 and F 002 have data
from both conditions.

As shown, our measure of overlap (albeit crude), clearly shows
that overlapping speech is a major problem for the recognition of
speech from meetings. If overlap regions are removed, the recog-
nition accuracy overall is actually better than that for Switchboard.
It is premature to make absolute comparisons here, but the fact that
the same pattern is observed for all speakers and across microphone

1Given the limitations of these pilot experiments (e.g., no on-task
training material and general pronunciation models), recognition
on nonnative speakers is essentially not working at present. In the
case of one nonnative speaker, we achieved a 200% word error rate,
surpassing a previous ICSI record. Word error results presented
here are based on meeting transcripts as of March 7, 2000, and are
subject to small changes as a result of ongoing transcription error
checking.

Table 2: Word error rates broken down by whether or not seg-
ment is in a region of overlapping speech.

Speaker No overlap With overlap
Headset Lapel Headset Lapel

M 004 41.0 - 50.3 -
M 001 34.2 - 47.6 -
F 001 40.5 - 45.8 -
M 009 30.7 41.0 40.7 117.8
F 002 37.7 29.8 50.5 56.3
M 002 - 48.6 - 71.3
M 007 52.2 - 81.3 -
M 008 50.9 - 69.9
Overall 39.9 38.5 48.7 85.2

conditions suggests that it is not the inherent speech properties of
participants that makes meetings difficult to recognize, but rather
the presence of overlapping speech.

Furthermore, one can note from Table 2 that there is a large inter-
action between microphone type and the effect of overlap. Overlap
is certainly a problem even for the close-talking head-mounted mi-
crophones. However, the degradation due to overlap is far greater
for the lapel microphone, which picks up a greater degree of back-
ground speech. As demonstrated by speaker F 002, it is possible
to have a comparatively good word error rate (29.8%) on the lapel
microphone in regions of no overlap (in this case 964/2480 words
were in nonoverlapping segments). Nevertheless, since the rate of
overlaps is so high in the data overall, we are avoiding the use
of the lapel microphone where possible in the future, preferring
head-mounted microphones for obtaining ground truth for research
purposes. We further note that for tests of acoustic robustness for
distant microphones, we tend to prefer microphones mounted on
the meeting table (or on a mock PDA frame), since they provide a
more realistic representation of the ultimate target application that
is a central interest to us - recognition via portable devices. In other
words, we are finding lapel mics to be too “bad” for near-field mi-
crophone tests, and too “good” for far-field tests.

Error rates by error type. The effect of overlapping speech on
error rates is due almost entirely to insertion errors, as shown in
Figure 1. Rates of other error types are nearly identical to those ob-
served for Switchboard (modulo a a slight increase in substitutions
associated with the lapel condition). This result is not surprising,
since background speech obviously adds false words in the hypoth-
esis. However, it is interesting that there is little increase in the
other error types, suggesting that a closer segmentation based on
individual channel data (as noted earlier) could greatly improve
recognition accuracy (by removing the surrounding background
speech).

Error rates by meeting type. Different types of meetings
should give rise to differences in speaking style and social interac-
tion, and we may be interested in whether such effects are realized
as differences in word error rates. The best way to measure such
effects is within speaker. The collection of regular, ongoing meet-
ings at ICSI offers the possibility of such within-speaker compar-
isons, since multiple speakers participate in more than one type of
regular meeting. Of the speakers shown in the data set used for this
study, speaker M 004 is a good case in point, since he has data from
three “Meeting Recorder” meetings and two “Robustness” meet-
ings. These two meeting types differ in social interaction; in the
first, there is a fairly open exchange between many of the partici-
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Figure 1: Word error rates by error type and micro-
phone/overlap condition. Switchboard scores refer to an in-
ternal SRI development testset that is a representative subset
of the development data for the 2001 hub-5 evals. It contains
41 speakers (5-minute conversation sides), from Switchboard-
1, Switchboard-2 and Cellular Switchboard in roughly equal
proportions, and is also balanced for gender and ASR diffi-
culty. The other scores are evaluated for the data described
in the text.

pants, while in the second, speaker M 004 directs the flow of the
meeting. It can also be seen from the table that speaker M 004 con-
tributes a much higher rate of words relative to overall words in the
latter meeting type. Interestingly however, his recognition rate and
OOV rates are quite similar across the meeting types. Study of ad-
ditional speakers across meetings will allow us to further examine
this issue.

5. FUTURE WORK
The areas mentioned in the earlier section on “Challenges” will

require much more work in the future. We and our colleagues at
collaborating institutions will be working in all of these. Here, we
briefly mention some of the work in our current plans for the study
of speech from meetings.

Far-field microphone ASR. Starting with the read digits and
proceeding to spontaneous speech, we will have a major focus on
improving recognition on the far-field channels. In earlier work we
have had some success in recognizing artificially degraded speech
[6][5], and will be adapting and more fully developing these ap-
proaches for the new data and task. Our current focus in these
methods is on the designing of multiple acoustic representations
and the combination of the resulting probability streams, but we
will also compare these to methods that are more standard (but im-
practical for the general case) such as echo cancellation using both
the close and distant microphones.

Overlap type modeling. One of the distinctive characteristics
of naturalistic conversation (in contrast to monolog situations) is
the presence of overlapping speech. Overlapping speech may be
of several types, and affects the flow of discourse in various ways.
An overlap may help to usurp the floor from another speaker (e.g.,
interruptions), or to encourage a speaker to continue (e.g., back
channels). Also, some overlaps may be accidental, or a part of joint

action (as when a group tries to help a speaker to recall a person’s
name when he is in mid-sentence). In addition, different speakers
may differ in the amount and kinds of overlap in which they engage
(speaker style). In future work we will explore types of overlaps
and their physical parameters, including prosodic aspects.

Language modeling. Meetings are also especially challenging
for the language model, since they tend to comprise a diverse range
of topics and styles, and matched training data is hard to come
by (at least in this initial phase of the project). Therefore, we ex-
pect meeting recognition to necessitate investigation into novel lan-
guage model adaptation and robustness techniques.

Prosodic modeling. Finally, we plan to study the potential con-
tribution of prosodic (temporal and intonational) features to auto-
matic processing of meeting data. A project just underway is con-
structing a database of prosodic features for meeting data, extend-
ing earlier work [10, 9]. Goals include using prosody combined
with language model information to help segment speech into co-
herent semantic units, to classify dialog acts [12], and to aid speaker
segmentation.
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