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ABSTRACT
In this paper, we discuss experiments applying machine learning
techniques to the task of confusion set disambiguation, using three
orders of magnitude more training data than has previously been
used for any disambiguation-in-string-context problem. In an
attempt to determine when current learning methods will cease to
benefit from additional training data, we analyze residual errors
made by learners when issues of sparse data have been
significantly mitigated. Finally, in the context of our results, we
discuss possible directions for the empirical natural language
research community.
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1. INTRODUCTION
A significant amount of work in empirical natural language
processing involves developing and refining machine learning
techniques to automatically extract linguistic knowledge from on-
line text corpora. While the number of learning variants for
various problems has been increasing, the size of training sets
such learning algorithms use has remained essentially unchanged.
For instance, for the much-studied problems of part of speech
tagging, base noun phrase labeling and parsing, the Penn
Treebank, first released in 1992, remains the de facto training
corpus. The average training corpus size reported in papers
published in the ACL-sponsored Workshop on Very Large
Corpora was essentially unchanged from the 1995 proceedings to
the 2000 proceedings. While the amount of available on-line text
has been growing at an amazing rate over the last five years (by
some estimations, there are currently over 500 billion readily
accessible words on the web), the size of training corpora used by

our field has remained static.

Confusable word set disambiguation, the problem of choosing the
correct use of a word given a set of words with which it is
commonly confused, (e.g. {to, too, two}, {your, you’re}), is a
prototypical problem in NLP. At some level, this task is identical
to many other natural language problems, including word sense
disambiguation, determining lexical features such as pronoun case
and determiner number for machine translation, part of speech
tagging, named entity labeling, spelling correction, and some
formulations of skeletal parsing. All of these problems involve
disambiguating from a relatively small set of tokens based upon a
string context. Of these disambiguation problems, lexical
confusables possess the fortunate property that supervised training
data is free, since the differences between members of a confusion
set are surface-apparent within a set of well-written text.

To date, all of the papers published on the topic of confusion set
disambiguation have used training sets for supervised learning of
less than one million words. The same is true for most if not all of
the other disambiguation-in-string-context problems. In this
paper we explore what happens when significantly larger training
corpora are used. Our results suggest that it may make sense for
the field to concentrate considerably more effort into enlarging
our training corpora and addressing scalability issues, rather than
continuing to explore different learning methods applied to the
relatively small extant training corpora.

2. PREVIOUS WORK
2.1 Confusion Set Disambiguation
Several methods have been presented for confusion set
disambiguation. The more recent set of techniques includes
multiplicative weight-update algorithms [4], latent semantic
analysis [7], transformation-based learning [8], differential
grammars [10], decision lists [12], and a variety of Bayesian
classifiers [2,3,5]. In all of these papers, the problem is
formulated as follows: Given a specific confusion set (e.g. {to,
two, too}), all occurrences of confusion set members in the test
set are replaced by some marker. Then everywhere the system
sees this marker, it must decide which member of the confusion
set to choose. Most learners that have been applied to this
problem use as features the words and part of speech tags



appearing within a fixed window, as well as collocations
surrounding the ambiguity site; these are essentially the same
features as those used for the other disambiguation-in-string-
context problems.

2.2 Learning Curves for NLP
A number of learning curve studies have been carried out for
different natural language tasks. Ratnaparkhi [12] shows a
learning curve for maximum-entropy parsing, for up to roughly
one million words of training data; performance appears to be
asymptoting when most of the training set is used. Henderson [6]
showed similar results across a collection of parsers.

Figure 1 shows a learning curve we generated for our task of
word-confusable disambiguation, in which we plot test
classification accuracy as a function of training corpus size using
a version of winnow, the best-performing learner reported to date
for this well-studied task [4]. This curve was generated by training
on successive portions of the 1-million word Brown corpus and
then testing on 1-million words of Wall Street Journal text for
performance averaged over 10 confusion sets. The curve might
lead one to believe that only minor gains are to be had by
increasing the size of training corpora past 1 million words.

While all of these studies indicate that there is likely some (but
perhaps limited) performance benefit to be obtained from
increasing training set size, they have been carried out only on
relatively small training corpora. The potential impact to be felt by
increasing the amount of training data by any signifcant order has
yet to be studied.
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Figure 1: An Initial Learning Curve for Confusable
Disambiguation

3. EXPERIMENTS
This work attempts to address two questions – at what point will
learners cease to benefit from additional data, and what is the
nature of the errors which remain at that point. The first question
impacts how best to devote resources in order to improve natural
language technology. If there is still much to be gained from
additional data, we should think hard about ways to effectively
increase the available training data for problems of interest. The
second question allows us to study failures due to inherent
weaknesses in learning methods and features rather than failures
due to insufficient data.

Since annotated training data is essentially free for the problem of
confusion set disambiguation, we decided to explore learning
curves for this problem for various machine learning algorithms,
and then analyze residual errors when the learners are trained on
all available data. The learners we used were memory-based
learning, winnow, perceptron,1 transformation-based learning, and
decision trees. All learners used identical features2 and were used
out-of-the-box, with no parameter tuning. Since our point is not
to compare learners we have refrained from identifying the
learners in the results below.

We collected a 1-billion-word training corpus from a variety of
English texts, including news articles, scientific abstracts,
government transcripts, literature and other varied forms of prose.
Using this collection, which is three orders of magnitude greater
than the largest training corpus previously used for this task, we
trained the five learners and tested on a set of 1 million words of
Wall Street Journal text.3

In Figure 2 we show learning curves for each learner, for up to
one billion words of training data.4 Each point in the graph
reflects the average performance of a learner over ten different
confusion sets which are listed in Table 1. Interestingly, even out
to a billion words, the curves appear to be log-linear. Note that
the worst learner trained on approximately 20 million words
outperforms the best learner trained on 1 million words. We see
that for the problem of confusable disambiguation, none of our
learners is close to asymptoting in performance when trained on
the one million word training corpus commonly employed within
the field.

Table 1: Confusion Sets
{accept, except} {principal, principle}
{affect, effect} {then, than}
{among, between} {their, there}
{its, it’s} {weather, whether}
{peace, piece} {your, you’re}

The graph in Figure 2 demonstrates that for word confusables, we
can build a system that considerably outperforms the current best
results using an incredibly simplistic learner with just slightly
more training data. In the graph, Learner 1 corresponds to a
trivial memory-based learner. This learner simply keeps track of
all <wi-1, wi+1>, < wi-1> and <wi+1> counts for all occurrences of
the confusables in the training set. Given a test set instance, the
learner will first check if it has seen <wi-1,wi+1> in the training set.
If so, it chooses the confusable word most frequently observed
with this tuple. Otherwise, the learner backs off to check for the
frequency of <wi-1>; if this also was not seen then it will back off
to <wi+1>, and lastly, to the most frequently observed confusion-

1 Thanks to Dan Roth for making both Winnow and Perceptron
available.

2 We used the standard feature set for this problem. For details
see [4].

3 The training set contained no text from WSJ.
4 Learner 5 could not be run on more than 100 million words of

training data.



set member as computed from the training corpus. Note that with
10 million words of training data, this simple learner outperforms
all other learners trained on 1 million words.

Many papers in empirical natural language processing involve
showing that a particular system (only slightly) outperforms
others on one of the popular standard tasks. These comparisons
are made from very small training corpora, typically less than a
million words. We have no reason to believe that any
comparative conclusions drawn on one million words will hold
when we finally scale up to larger training corpora. For instance,
our simple memory based learner, which appears to be among the
best performers at a million words, is the worst performer at a
billion. The learner that performs the worst on a million words of
training data significantly improves with more data.

Of course, we are fortunate in that labeled training data is easy to
locate for confusion set disambiguation. For many natural
language tasks, clearly this will not be the case. This reality has
sparked interest in methods for combining supervised and
unsupervised learning as a way to utilize the relatively small
amount of available annotated data along with much larger
collections of unannotated data [1,9]. However, it is as yet
unclear whether these methods are effective other than in cases
where we have relatively small amounts of annotated data
available.

4. RESIDUAL ERRORS
After eliminating errors arising from sparse data and examining
the residual errors the learners make when trained on a billion

words, we can begin to understand inherent weaknesses in
ourlearning algorithms and feature sets. Sparse data problems can
always be reduced by buying additional data; the remaining
problems truly require technological advances to resolve them.

We manually examined a sample of errors classifiers made when
trained on one billion words and classified them into one of four
categories: strongly misleading features, ambiguous context,
sparse context and corpus error. In the paragraphs that follow, we
define the various error types, and discuss what problems remain
even after a substantial decrease in the number of errors attributed
to the problem of sparse data.

Strongly Misleading Features
Errors arising from strongly misleading features occur when
features which are strongly associated with one class appear in the
context of another. For instance, in attempting to characterize the
feature set of weather (vs. its commonly-confused set member
whether), according to the canonical feature space used for this
problem we typically expect terms associated with atmospheric
conditions, temperature or natural phenomena to favor use of
weather as opposed to whether. Below is an example which
illustrates that such strong cues are not always sufficient to
accurately disambiguate between these confusables. In such cases,
a method for better weighing features based upon their syntactic
context, as opposed to using a simple bag-of-words model, may
be needed.

Example: On a sunny day whether she swims or not depends on
the temperature of the water.
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Figure 2. Learning Curves for Confusable Disambiguation



Ambiguous Context
Errors can also arise from ambiguous contexts. Such errors are
made when feature sets derived from shallow local contexts are
not sufficient to disambiguate among members of a confusable
set. Long-range, complex dependencies, deep semantic
understanding or pragmatics may be required in order to draw a
distinction among classes. Included in this class of problems are
so-called “garden-path” sentences, in which ambiguity causes an
incorrect parse of the sentence to be internally constructed by the
reader until a certain indicator forces a revision of the sentence
structure.

Example 1: It's like you're king of the hill.

Example 2: The transportation and distribution departments
evaluate weather reports at least four times a day to determine if
delivery schedules should be modified.

Sparse Context
Errors can also be a result of sparse contexts. In such cases, an
informative term appears, but the term was not seen in the training
corpus. Sparse contexts differ from ambiguous contexts in that
with more data, such cases are potentially solvable using the
current feature set. Sparse context problems may also be lessened
by attributing informative lexical features to a word via clustering
or other analysis.

Example: It's baseball's only team-owned spring training site.

Corpus Error
Corpus errors are attributed to cases in which the test corpus
contains an incorrect use of a confusable word, resulting in
incorrectly evaluating the classification made by a learner. In a
well-edited test corpus such as the Wall Street Journal, errors of
this nature will be minimal.

Example: If they don't find oil, its going to be quite a letdown.

Table 2 shows the distribution of error types found after learning
with a 1-billion-word corpus. Specifically, the sample of errors
studied included instances that one particular learner, winnow,
incorrectly classified when trained on one billion words. It is
interesting that more than half of the errors were attributed to
sparse context. Such errors could potentially be corrected were
the learner to be trained on an even larger training corpus, or if
other methods such as clustering were used.

The ambiguous context errors are cases in which the feature space
currently utilized by the learners is not sufficient for
disambiguation; hence, simply adding more data will not help.

Table 2: Distribution of Error Types

Error Type Percent Observed
Ambiguous Context 42%
Sparse Context 57%
Misleading Features 0%
Corpus Error 1%

5. A BILLION-WORD TREEBANK?
Our experiments demonstrate that for confusion set
disambiguation, system performance improves with more data, up
to at least one billion words. Is it feasible to think of ever having
a billion-word Treebank to use as training material for tagging,
parsing, named entity recognition, and other applications?
Perhaps not, but let us run through some numbers.

To be concrete, assume we want a billion words annotated with
part of speech tags at the same level of accuracy as the original
million word corpus.5 If we train a tagger on the existing corpus,
the naïve approach would be to have a person look at every single
tag in the corpus, decide whether it is correct, and make a change
if it is not. In the extreme, this means somebody has to look at
one billion tags. Assume our automatic tagger has an accuracy of
95% and that with reasonable tools, a person can verify at the rate
of 5 seconds per tag and correct at the rate of 15 seconds per tag.
This works out to an average of 5*.95 + 15*.05 = 5.5 seconds
spent per tag, for a total of 1.5 million hours to tag a billion
words. Assuming the human tagger incurs a cost of $10/hour, and
assuming the annotation takes place after startup costs due to
development of an annotation system have been accounted for, we
are faced with $15 million in labor costs. Given the cost and labor
requirements, this clearly is not feasible. But now assume that we
could do perfect error identification, using sample selection
techniques. In other words, we could first run a tagger over the
billion-word corpus and using sample selection, identify all and
only the errors made by the tagger. If the tagger is 95% accurate,
we now only have to examine 5% of the corpus, at a correction
cost of 15 seconds per tag. This would reduce the labor cost to $2
million for tagging a billion words. Next, assume we had a way
of clustering errors such that correcting one tag on average had
the effect of correcting 10. This reduces the total labor cost to
$200k to annotate a billion words, or $20k to annotate 100
million. Suppose we are off by an order of magnitude; then with
the proper technology in place it might cost $200k in labor to
annotate 100 million additional words.

As a result of the hypothetical analysis above, it is not absolutely
infeasible to think about manually annotating significantly larger
corpora. Given the clear benefit of additional annotated data, we
should think seriously about developing tools and algorithms that
would allow us to efficiently annotate orders of magnitude more
data than what is currently available.

6. CONCLUSIONS
We have presented learning curves for a particular natural
language disambiguation problem, confusion set disambiguation,
training with more than a thousand times more data than had
previously been used for this problem. We were able significantly
reduce the error rate, compared to the best system trained on the
standard training set size, simply by adding more training data.

5 We assume an annotated corpus such as the Penn Treebank
already exists, and our task is to significantly grow it.
Therefore, we are only taking into account the marginal cost of
additional annotated data, not start-up costs such as style
manual design.



We see that even out to a billion words the learners continue to
benefit from additional training data.

It is worth exploring next whether emphasizing the acquisition of
larger training corpora might be the easiest route to improved
performance for other natural language problems as well.
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