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Abstract 

This paper explores the segmentation of 
tutorial dialogue into cohesive topics. A 
latent semantic space was created using 
conversations from human to human tu-
toring transcripts, allowing cohesion be-
tween utterances to be measured using 
vector similarity.  Previous cohesion-
based segmentation methods that focus on 
expository monologue are reapplied to 
these dialogues to create benchmarks for 
performance.  A novel moving window 
technique using orthonormal bases of se-
mantic vectors significantly outperforms 
these benchmarks on this dialogue seg-
mentation task. 

1 Introduction 

Ever since Morris and Hirst (1991)’s ground-
breaking paper, topic segmentation has been a 
steadily growing research area in computational 
linguistics, with applications in summarization 
(Barzilay and Elhadad, 1997), information retrieval 
(Salton and Allan, 1994), and text understanding 
(Kozima, 1993).  Topic segmentation likewise has 
multiple educational applications, such as question 
answering, detecting student initiative, and assess-
ing student answers. 

There have been essentially two approaches to 
topic segmentation in the past.  The first of these, 
lexical cohesion, may be used for either linear 
segmentation (Morris and Hirst, 1991; Hearst, 
1997) or hierarchical segmentation (Yarri, 1997; 
Choi, 2000).  The essential idea behind the lexical 

cohesion approaches is that different topics will 
have different vocabularies.  Therefore the lexical 
cohesion within topics will be higher than the lexi-
cal cohesion between topics, and gaps in cohesion 
may mark topic boundaries. The second major ap-
proach to topic segmentation looks for distinctive 
textual or acoustic markers of topic boundaries, 
e.g. referential noun phrases or pauses (Passonneau 
and Litman, 1993; Passonneau and Litman, 1997).  
By using multiple markers and machine learning 
methods, topic segmentation algorithms may be 
developed using this second approach that have a 
higher accuracy than methods using a single 
marker alone (Passonneau and Litman, 1997). 

The primary technique used in previous studies, 
lexical cohesion, is no stranger to the educational 
NLP community.  Lexical cohesion measured by 
latent semantic analysis (LSA) (Landauer and Du-
mais, 1997; Dumais, 1993; Manning and Schütze, 
1999) has been used in automated essay grading 
(Landauer, Foltz, and Laham, 1998) and in under-
standing student input during tutorial dialogue 
(Graesser et al., 2001). The present paper investi-
gates an orthonormal basis of LSA vectors, cur-
rently used by the AutoTutor ITS to assess student 
answers (Hu et al., 2003), and how it may be used 
to segment tutorial dialogue. 

The focus on dialogue distinguishes our work 
from virtually all previous work on topic segmen-
tation: prior studies have focused on monologue 
rather than dialogue. Without dialogue, previous 
approaches have only limited relevance to interac-
tive educational applications such as intelligent 
tutoring systems (ITS).  The only existing work on 
topic segmentation in dialogue, Galley et al. 
(2003), segments recorded speech between multi-
ple persons using both lexical cohesion and dis-
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tinctive textual and acoustic markers.  The present 
work differs from Galley et al. (2003) in two re-
spects, viz. we focus solely on textual information 
and we directly address the problem of tutorial dia-
logue.   

In this study we apply the methods of Foltz et al. 
(1998), Hearst (1994, 1997), and a new technique 
utilizing an orthonormal basis to topic segmenta-
tion of tutorial dialogue.  All three are vector space 
methods that measure lexical cohesion to deter-
mine topic shifts.  Our results show that the new 
using an orthonormal basis significantly outper-
forms the other methods. 

Section 2 reviews previous work, and Section 3 
reviews the vector space model.  Section 4 intro-
duces an extension of the vector space model 
which uses an orthonormal basis.  Section 5 out-
lines the task domain of tutorial dialogue, and Sec-
tion 6 presents the results of previous and the 
current method on this task domain. A discussion 
and comparison of these results takes place in Sec-
tion 7.  Section 8 concludes. 

2 Previous work 

Though the idea of using lexical cohesion to seg-
ment text has the advantages of simplicity and in-
tuitive appeal, it lacks a unique implementation.  
An implementation must define how to represent 
units of text, compare the cohesion between units, 
and determine whether the results of comparison 
indicate a new text segment.  Both Hearst (1994, 
1997) and Foltz et al. (1998) use vector space 
methods discussed below to represent and compare 
units of text. The comparisons can be characterized 
by a moving window, where successive overlap-
ping comparisons are advanced by one unit of text.  
However, Hearst (1994, 1997) and Foltz et al. 
(1998) differ on how text units are defined and on 
how to interpret the results of a comparison. 

The text unit's definition in Hearst (1994, 1997) 
and Foltz et al. (1998) is generally task dependent, 
depending on what size gives the best results. For 
example, when measuring comprehension, Foltz et 
al. (1998) use the unit of the sentence, as opposed 
to the more standard unit of the proposition, be-
cause LSA is most correlated with comprehension 

at that level.  However, when using LSA to seg-
ment text, Foltz et al. (1998) use the paragraph as 
the unit, to "smooth out" the local changes in cohe-
sion and become more sensitive to more global 
changes of cohesion.  Hearst likewise chooses a 
large unit, 6 token-sequences of 20 tokens (Hearst, 
1994), but varies these parameters dependent on 
the characteristics of the text to be segmented, e.g. 
paragraph size.  

Under a vector space model, comparisons are 
performed by calculating the cosine of vectors rep-
resenting text.  As stated previously, these com-
parisons reflect the cohesion between units of text. 
In order to use these comparisons to segment text, 
however, one must have a criterion in place.  Foltz 
et al. (1998), noting mean cosines of .16 for 
boundaries and .43 for non-boundaries, choose a 
threshold criterion of .15, which is two standard 
deviations below the boundary mean of .43.  Using 
LSA and this criterion, Foltz et al. (1998) detected 
chapter boundaries with an F-measure of .33 (see 
Manning and Schütze (1999) for a definition of F-
measure).  Hearst (1994, 1997) in contrast uses a 
relative comparison of cohesion, by recasting vec-
tor comparisons as depth scores.  A depth score is 
computed as the difference between a given vector 
comparison and its surrounding peaks, i.e. the local 
maxima of vector comparisons on either side of the 
given vector comparison.  The greater the differ-
ence between a given comparison and its surround-
ing peaks, the higher the depth score.  Once all the 
depth scores are calculated for a text, those that are 
higher than one standard deviation below the mean 
are taken as topic boundaries.  Using a vector 
space method without singular value decomposi-
tion, Hearst (1997) reports an F-measure of .70 
when detecting topic shifts between paragraphs.  
Thus previous work suggests that the Hearst 
(1997) method is superior to that of Foltz et al. 
(1998), having roughly twice the accuracy indi-
cated by F-measure.  Although these two results 
used different data sets and are therefore not di-
rectly comparable, one would predict based on this 
limited evidence that the Hearst algorithm would 
outperform the Foltz algorithm on other topic seg-
mentation tasks. 
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3 The vector space model 

The vector space model is a statistical technique 
that represents the similarity between collections of 
words as a cosine between vectors (Manning and 
Schütze, 1999).  The process begins by collecting 
text into a corpus.  A matrix is created from the 
corpus, having one row for each unique word in 
the corpus and one column for each document or 
paragraph.  The cells of the matrix consist of a 
simple count of the number of times word i ap-
peared in document j.  Since many words do not 
appear in any given document, the matrix is often 
sparse.  Weightings are applied to the cells that 
take into account the frequency of word i in docu-
ment j and the frequency of word i across all 
documents, such that distinctive words that appear 
infrequently are given the most weight. Two col-
lections of words of arbitrary size are compared by 
creating two vectors.  Each word is associated with 
a row vector in the matrix, and the vector of a col-
lection is simply the sum of all the row vectors of 
words in that collection.  Vectors are compared 
geometrically by the cosine of the angle between 
them. 

LSA (Landauer and Dumais, 1997; Dumais 
1993) is an extension of the vector space model 
that uses singular value decomposition (SVD).  
SVD is a technique that creates an approximation 
of the original word by document matrix.  After 
SVD, the original matrix is equal to the product of 
three matrices, word by singular value, singular 
value by singular value, and singular value by 
document.  The size of each singular value corre-
sponds to the amount of variance captured by a 
particular dimension of the matrix.  Because the 
singular values are ordered in decreasing size, it is 
possible to remove the smaller dimensions and still 
account for most of the variance.  The approxima-
tion to the original matrix is optimal, in the least 
squares sense, for any number of dimensions one 
would choose.  In addition, the removal of smaller 
dimensions introduces linear dependencies be-
tween words that are distinct only in dimensions 
that account for the least variance.  Consequently, 
two words that were distant in the original space 
can be near in the compressed space, causing the 
inductive machine learning and knowledge acqui-
sition effects reported in the literature (Landauer 
and Dumais, 1997).  

4 An orthonormal basis 

Cohesion can be measured by comparing the co-
sines of two successive sentences or paragraphs 
(Foltz, Kintsch, and Landauer, 1998).  However, 
cohesion is a crude measure: repetitions of a single 
sentence will be highly cohesive (cosine of 1) even 
though no new information is introduced.  A varia-
tion of the LSA algorithm using orthonormalized 
vectors provides two new measures, “informativ-
ity” and “relevance”, which can detect how much 
new information is added and how relevant it is in 
a context (Hu et al., 2003).  The essential idea is to 
represent context by an orthonormalized basis of 
vectors, one vector for each utterance.  The basis is 
a subspace of the higher dimensional LSA space, 
in the same way as a plane or line is a subspace of 
3D space.  The basis is created by projecting each 
utterance vector onto the basis of previous utter-
ance vectors using a method known as the Gram-
Schmidt process (Anton, 2000).  Each projected 
utterance vector has two components, a component 
parallel to the basis and a component perpendicular 
to the basis.  These two components represent “in-
formativity” and “relevance”, respectively.  Let us 
first consider “relevance”. Since each vector in the 
basis is orthogonal, the basis represents all linear 
combinations of what has been previously said.  
Therefore the component of a new utterance vector 
that is parallel to the basis is already represented 
by a linear combination of the existing vectors.  
“Informativity” follows similarly: it is the perpen-
dicular component of a new utterance vector that 
can not be represented by the existing basis vec-
tors. For example, in Figure 1, a new utterance cre-
ates a new vector that can be projected to the basis, 
forming a triangle.  The leg of the triangle that lies 

VS 1 

VS 2

Informativity

Relevance 

Figure 1.  Projecting a new utterance to the basis
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along the basis indicates the “relevance” of the 
recent utterance to the basis; the perpendicular leg 
indicates new information.  Accordingly, a re-
peated utterance would have complete “relevance” 
but zero new information. 

5 Procedure 

The task domain is a subset of conversations from 
human-human computer mediated tutoring ses-
sions on Newton’s Three Laws of Motion, in 
which tutor and tutee engaged in a chat room-style 
conversation.  The benefits of this task domain are 
twofold. Firstly, the conversations are already tran-
scribed.  Additionally, tutors were instructed to 
introduce problems using a fixed set of scripted 
problem statements.  Therefore each topic shift 
corresponds to a distinct problem introduced by the 
tutor.  Clearly this problem would be trivial for a 
cue phrase based approach, which could learn the 
finite set of problem introductions. However, the 
current lexical approach does not have this luxury: 
words in the problem statements recur throughout 
the following dialogue. 

Human to human computer mediated physics tu-
toring transcripts first were removed of all markup, 
translated to lower case, and each utterance was 
broken into a separate paragraph.  An LSA space 
was made with these paragraphs alone, approxi-
mately one megabyte of text.  The conversations 
were then randomly assigned to training (21 con-
versations) and testing (22 conversations).  The 
average number of utterances per topic, 16 utter-
ances, and the average number of words per utter-
ance, 32 words, were calculated to determine the 
parameters of the segmentation methods.  For ex-
ample, a moving window size greater than 16 ut-
terances implies that, in the majority of 
occurrences, the moving window straddles three 
topics as opposed to the desired two.  

To replicate Foltz et al. (1998), software was 
written in Java that created a moving window of 
varying sizes on the input text, and the software 
retrieved the LSA vector and calculated the cosine 
of each window.  Hearst (1994, 1997) was repli-
cated using the JTextTile (Choi, 1999) Java soft-
ware. A variant of Hearst (1994, 1997) was created 
by using LSA instead of the standard vector space 
method.  The orthonormal basis method also used 
a moving window; however, in contrast to the pre-
vious methods, the window is not treated just as a 

large block of text.  Instead, the window consists 
of two orthonormal bases, one on either side of an 
utterance.  That is, a region of utterances above the 
test utterance is projected, utterance by utterance, 
into an orthonormal basis, and likewise a region of 
utterances below the test utterance is projected into 
another orthonormal basis.  Then the test utterance 
is projected into each orthonormal basis, yielding 
measures of “relevance” and “informativity” with 
respect to each.  Next the elements that make up 
each orthonormal basis are aggregated into a block, 
and a cosine is calculated between the test utter-
ance and the blocks on either side, producing a 
total of six measures. 

Each tutoring session consists of the same 10 
problems, discussed between one of a set of 4 tu-
tors and one of 18 subjects. The redundancy pro-
vides a variety of speaking and interaction styles 
on the same topic. 

Tutor: A clown is riding a 
unicycle in a straight line.  
She accidentally drops an egg 
beside her as she continues 
to move with constant veloc-
ity. Where will the egg land 
relative to the point where 
the unicycle touches the 
ground?  Explain. 
Student: The egg should land 
right next to the unicycle.  
The egg has a constant hori-
zontal velocity.  The verti-
cal velocity changes and 
decreases as gravity pulls 
the egg downward at a rate of 
9.8m/s^2.  The egg should 
therefore land right next to 
the unicycle. 
Tutor: Good! There is only 
one thing I would like to 
know. What can you say about 
the horizontal velocity of 
the egg compared to the hori-
zontal velocity of the clown? 
Student: Aren't they the 
same? 

All of the 10 problems are designed to require ap-
plication of Newton’s Laws to be solved, and 
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therefore conversations share many terms such as 
force, velocity, acceleration, gravity, etc.  

6 Results 

For each method, the development set was first 
used to establish the parameters such as text unit 
size and classification criterion.  The methods, 
tuned to these parameters, were then applied to the 
testing data. 
 

6.1 Foltz et al. (1998) 

In order to replicate Foltz et al.’s results, a text unit 
size and window size needed to be chosen.  The 
utterance was chosen as the text unit size, which 
included single word utterances, full sentences, and 
multi-sentence utterances.  To determine the most 
appropriate window size, results from all sizes be-
tween 1 and 16 (the average number of utterances 
between topic shifts) were gathered.  The greatest 
difference between the means for utterances that 
introduce a topic shift versus non-shift utterances 
occurs when the window contains four utterances.  
The standard deviation is uniformly low for win-
dows containing more than two utterances and 
therefore can be disregarded in choosing a window 
size.   

The optimal cosine threshold for classification 
was found using logistic regression (Garson, 2003) 
which establishes a relationship between the cosine 
threshold and the log odds of classification. The 
optimal cutoff was found to be shift odds = .17 
with associated F-measure of .49.  The logistic 
equation of best fit is: 
 

cosine)  (-13.345  1.887  odds)ln(shift ⋅+=  
 

F-measure of .49 is 48% higher than the F-
measure reported by Foltz et al. (1998) for seg-
menting monologue.  On the testing corpus the F-
measure is .52, which demonstrates good generali-
zation for the logistic equation given.  Compared 
the F-measure of .33 reported by Foltz et al. 
(1998), the current result is 58% higher. 

6.2 Hearst (1994, 1997) 

The JTextTile software was used to implement 
Hearst (1994) on dialogue.  As with Foltz et al. 
(1998), a text unit and window size had to be de-

termined for dialogue. Hearst (1994) recommends 
using the average paragraph size as the window 
size.  Using the development corpus's average 
topic length of 16 utterances as a reference point, 
F-measures were calculated for the combinations 
of window size and text unit size in Table 1. 

The optimal combination of parameters (F-
measure = .17) is a unit size of 16 words and a 
window size of 16 units.  This combination 
matches Hearst (1994)'s heuristic of choosing the 
window size to be the average paragraph length.  

  

Table 1. Unit vs. window size for Hearst method 
 
On the test set, this combination of parameters 

yielded an F-measure of .14 as opposed to the F-
measure for monologue reported by Hearst (1997), 
.70.  For dialogue, the algorithm is 20% as effec-
tive as it is for monologue.  It is unclear, however, 
exactly what part of the algorithm contributes to 
this poor performance. The two most obvious pos-
sibilities are the segmentation criterion, i.e. depth 
scores, or the standard vector space method. 

To further explore these possibilities, the Hearst 
method was augmented with LSA.  Again, the unit 
size and window size had to be calculated.  As 
with Foltz, the unit size was taken to be the utter-
ance.  The window size was determined by com-
puting F-measures on the development corpus for 
all sizes between 1 and 16.  The optimal window 
size is 9, F-measure = .22.  Given the smaller 
number of test cases, 22, this F-measure of .22 is 
not significantly different from .17.  However, the 
Foltz method is significantly higher than both of 
these, p < .10. 

6.3 Orthonormal basis 

The text unit used in the orthonormal basis is the 
single utterance.  The optimal window size, i.e. the 
orthonormal basis size, was determined by creating 
a logistic regression to calculate the maximum F-
measure for several orthonormal basis sizes.  The 
findings of this procedure are listed in Table 2. 

    Window 
size 

   

  2 4 8 16 32 
Unit 
size 8 .134 .129 .130 .146 .144 

 16 .142 .133 .130 .171 .140 
 32 .138 .132 .130 .151 .143 
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Table 2. F-measure for orthonormal basis sizes 
 
F-measure monotonically increases until the or-

thonormal basis holds six elements and holds rela-
tively steady for larger orthonormal basis sizes.  
Since F-measure does not increase much over .72 
for greater orthonormal basis sizes, 6 was chosen 
as the most computationally efficient size for the 
strength of the effect.  The logistic equation of best 
fit is: 
 

)ityinformativ(2.771
)relevance(-2.698

)ityinformativ(-23.567
)relevance(-30.843

)cosine (16.703 
 20.027 

odds)ln(shift  

2

2

1

1

2

⋅+
⋅+
⋅+
⋅+
⋅+

=   

 
Where the index of 1 indicates a measure on the 
window preceding the utterance, and an index of 2 
indicates a measure on the window following the 
utterance.  In the regression, the cosine between 
the utterance and the preceding window was not 
significant, p = .86.  This finding reflects the intui-
tion that the cosine to the following window varies 
according to whether the following window is on a 
new topic, whereas the cosine to the preceding 
window is always high. Additionally, measures of 
“relevance” and “informativity” correspond to vec-
tor length; all other measures did not contribute 
significantly to the model and so were not in-
cluded.   

The sign of the metrics illuminates their role in 
the model.  The negative sign on the coefficients 
for relevance1, informativity1, and relevance2 indi-
cates that they are inversely correlated with an ut-
terance signaling the start of a new topic.  The only 
surprising feature is that informativity1 is nega-
tively correlated instead of positively correlated: 
one would expect a topic shift to introduce new 
information.  There is possibly some edge effect 
here, since the last move of a topic is often a sum-
marizing move that shares many of the physics 
terms present in the introduction of a new topic.  
On the other hand, the positive sign on cosine2 and 

informativity2 indicates that the start of a new topic 
should have elements in common with the follow-
ing material and add new information to that mate-
rial, as an overview would.  Beyond the sign, the 
exponentials of these values indicate how the two 
basis metrics are weighted. For example, when 
informativity2 is raised by one unit, a topic shift is 
16 times more likely.   

On the testing corpus the F-measure of the or-
thonormal basis method is .67, which is signifi-
cantly different from the performance of all three 
methods mentioned above, p < .05.   Table 3 com-
pares this result with the previous results in the 
current study for segmenting dialogue. 
 

Method Hearst Hearst + 
LSA Foltz Orth. 

basis 
F .14 .22 .52 .67 

Table 3. Comparison of dialogue segmentation methods 

7 Discussion 

The relative ranking of these results is not alto-
gether surprising given the relationships between 
inferencing and LSA and between inferencing and 
dialogue.  Foltz et al. (1998) found that LSA 
makes simple bridging inferences in addition to 
detecting lexical cohesion.  These bridging infer-
ences are a kind of collocational cohesion (Halli-
day and Hassan, 1976) whereby words that co-
occur in similar contexts become highly related in 
the LSA space.  Therefore in applications where 
this kind of inferencing is required, one might ex-
pect an LSA based method to excel. 

Similarly to van Dijk and Kintsch's model of 
comprehension (van Dijk and Kintsch, 1983), dia-
logue can require inferences to maintain coher-
ence. According to Grice's Co-operative Principle, 
utterances lacking semantic coherence flout the 
Maxim of Relevance and license an inference 
(Grice, 1975):  

 
S1: Let’s go dancing. 
S2: I have an exam tomorrow. 

 
The "inference" in the sense of Foltz, Kintsch, 

and Landauer (1998) would be represented by a 
high cosine between these utterances, even though 
they don't share any of the same words.  Dialogue 
generally tends to be less lexically cohesive and 
require more inferencing than expository mono-

Size 3 4 5 6 8 10 15 
F .59 .63 .65 .72 .73 .72 .73
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logue, so one might predict that LSA would excel 
in dialogue applications. 

However, LSA has a weakness: the cosine 
measure between two vectors does not change 
monotonically as new word vectors are added to 
either of the two vectors.  Accordingly, the addi-
tion of a word vector can cause the cosine between 
two text units to dramatically increase or decrease. 
Therefore the distinctive properties of individual 
words can be lost with the addition of more words 
to a text unit.  This problem can be addressed by 
using an orthonormal basis (Hu et al., 2003).   By 
using a basis, each utterance is kept independent, 
so “inferencing” can extend over both the entire set 
of utterances and the linear combination of any of 
its subsets.  Accordingly, when “inferencing” over 
the entire text unit is required, one would expect a 
basis method using LSA vectors to outperform a 
standard LSA method.  This expectation has been 
put to the test recently by Olney & Cai (2005), 
who find that an orthonormal basis can signifi-
cantly predict entailment on test data supplied by 
the PASCAL Textual Entailment Challenge 
(PASCAL, 2004). 

Beyond relative performance rankings, more 
support for the above reasoning can be found in the 
difference between Hearst and Hearst + LSA. Re-
call that in monologue, Hearst (1997) reports a 
much larger F-measure than Foltz et al. (1998), .70 
vs. .33, albeit on different data sets.  In the present 
dialogue corpus, these roles are reversed, .14 vs. 
.52.  Possible reasons for this reversal are the seg-
mentation criterion, the vector space method, or 
the fact that Foltz has been trained on similar data 
via regression and Hearst has not.  However, com-
paring the Hearst algorithm with the Hearst + LSA 
algorithm indicates that a 57% improvement stems 
from the addition of LSA, keeping all other factors 
constant. While this result is not statistically sig-
nificant, the direction of the result supports the use 
of an “inferencing” vector space method for seg-
menting dialogue.  

Unfortunately, the large difference in F-measure 
between the Foltz algorithm and the Hearst + LSA 
algorithm is more difficult to explain.  These two 
methods differ by their segmentation criterion and 
by their training (Foltz is a regression model and 
Hearst is not). It may be that Hearst (1994, 1997)’s 
segmentation criterion, i.e. depth scores, do not 
translate well to dialogue.  Perhaps the assignment 
of segment boundaries based on the relative differ-

ence between a candidate score and its surrounding 
peaks is highly sensitive to cohesion gaps created 
by conversational implicatures.  On the other hand 
the differences between these two methods may be 
entirely attributable to the amount of training they 
received.  One way to separate the contributions of 
the segmentation criterion and training would be to 
create a logistic model using the Hearst + LSA 
method and to compare this to Foltz.  

The increased effectiveness of the orthonormal 
basis method over the Foltz algorithm can also be 
explained in terms of “inferencing”.  Since “infer-
encing” is overwhelmed by lexical cohesion (Foltz 
et al., 1998), the increase in window size for the 
Foltz algorithm deteriorates performance for a 
window size greater than 4.  In contrast, the or-
thonormal basis method becomes most effective as 
the orthonormal basis size increases past 4.  This 
dichotomy illustrates that the Foltz algorithm is not 
complementary to an “inferencing” approach in 
general.  Use of an orthonormal basis, on the other 
hand, increases sensitivity to collocational cohe-
sion without sacrificing lexical cohesion. 

8 Conclusion 

This study explored the segmentation of tutorial 
dialogue using techniques that have previously 
been applied to expository monologue and using a 
new orthonormal basis technique.  The techniques 
previously applied to monologue reversed their 
roles of effectiveness when applied to dialogue.  
This role reversal suggests the predominance of 
collocational cohesion, requiring “inferencing”, 
present in this tutorial dialogue.  The orthonormal 
basis method, which we suggest has an increased 
capacity for “inferencing”, outperformed both of 
the techniques previously applied to monologue, 
and demonstrates that segmentation of these tuto-
rial dialogues most benefits from a method sensi-
tive to lexical and collocational cohesion over 
large text units. 
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