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The problem of parsing Natural Language 

Parsing sentences of a Natural LanguaF(NL) is an essential requiRrnent for a variety of NL a p  
plications, and has been extensively studied. In particular, the sort of tasks which it would be de- 
sirable to do, include the ability to tag each word with its part-of-sin:h;  to delineate with brackets, 
and label with a category name, each syntactic phrase; and to be able to adapt to different types 
of source material. Despite some 30 years of active research Performing these tasks with a high 
degree of accuracy on unrestricted text is still an unsolved problem. 

The conventional approach is a grammar, usually created manually by the encoding of some lin- 
guistic intuitions in some notation. Many grammars have a substantial context.free 
grammar~CFG) component, or ate equivalent in computational power to CFG's. A standard 
parsing algorithm can then be used to obtain analyses of any given sentence. A discussion of the 
relevant concepts of parsing CFG'S is given in lloperott and Ullman, 1979, where the CKY algo- 
rithm, the fast of the ~ a r t  parsing t~hnlques, is described. A recent example of a grammar, of 
CFG power, is the C~neralised Phrase Structure Grammar (GPSG) given by Gazdar, Klein, 
PuUum and Sag, 1985. Simple context-free grammars, and systems derived from them, have the 
consequence that practical grammars of full Natural Languages tend to be very large; algorithms fi~r 
parsing grarru'nars are computationally expensive; and hand-written grammars arc often incomplete, 
and are usually highly ambiguous. Consequently this method alone is unlikely to solve the problem 
of parsing NL's. 

An extension to context-free grammars which considers each rule to be associated with a probabifity 
is called a probabiflstic context-free grammar, or P-CFG (see Wetheriil, 1980 for a full discussion). 
Conceptually, the probability of a rule for a given non-terminal symbol is the likelihood with which 
the rule is applied, as opposed to other rules for rewriting the same non-terminal label. With the 
addition of this extra piece of information it is possible to choose the parse which is the most likely 
from among all the ambiguous parses. The "most likely" parse is considered to correspond to the 
"correct" parse. A method exists for training such grammars with respect to some corpus, the 
Inside-Outside Algorithm (Baker, 1979). It is described in Jelinek, 1985(b), and has been used by, 
for example~ Fujisaki 1987. Adapting a model with reference to a training cnrlnzv should enable the 
model to be used with greater success on an unseen te.~t corpu.v. The problems of large grammars, 
expensive algorithms, incomplete and ambiguous grammars, arc essentially the same as for simple 
context-free grammars. Additionally, estimates must be made of the probabilities of the rules in the 
grammar. Since the true values for a natural language, such as I':,nglish, arc not known, the quality 
of the estimates made is rather important. Any arbitrary initial guess may be a Io,g way from the 
true value, and will need a great deal of training to achieve a good estimate, if the process of 
training is slow, then it may not be possible to do enough training to significantly improve the es- 
timates. If the grammar being trained is not a good grammar, then it may not be possible to get a 
good solution to the parsing problem despite a very iF'eat deal of training. 

It is assumed here that no restriction on vocabulary or sentence construction can be made. There 
are a number of significant applications, such as speech recognition and speech synthesis, for which 
this is the only reasonable assumption (see Jelinek, 1985(a)). The search for a method to perform 
fast, accurate parsing of unrestricted natural language sentences may require other models. One 
way forward is to attempt to use a formulation of grammatical knowledge which uses h'Lformation 
in a more compact way. A popular method is the use of so-called unification grammars (derived 
in turn from GPSG). One attempt to design a computable form for such a grammar is described 
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by Sharman, 1989. An alternative step is to attempt to consider a development of the ID/LP no- 
tation introduced in GPSG. 

Probabilistic ID/LP grammars 

The idea of separating simple context-free rules into two, orthogunal rule sets, immediate 
dominance(ID) rules, and linear precedence(LP) rules, gives a notation for writing grammars called 
ID/LP. This technique is used in GPSG with a number of other techniques to represent linguistic 
facts in a compact and perspicuous formalism. Some of the other aspects of GPSG, such as the 
use of features to represent information in non-terminal categories, the use of feature co-occurrence 
restrictions, the use of feature specification defaults, and the definition of feature passing con- 
ventions, are not considered here. 

It is assumed in GPSG that dominance and precedence relations are independent. The independ- 
ence of separate dominance rules does not seem problematical, but whether or not precedence rules 
are uniform across all phrase types does seem more contentious. As a result, ID/LP grammars tend 
to have a rather rich collection of ID rules, and a rather small collection of LP rules. This raises 
the interesting question of the possibility that ID and LP rules are not independent, but this pos- 
sibility is not pursued here. 

The notion of a grammatical relation, such as precedence or dominance, can be generallsed to mean 
the propensity of a symbol to relate to another symbol. For example, a noun phrase has a pro- 
pensity to contain a noun. Since it is clear that at least some noun-phrases do not contain nouns, 
this propensity will not be a certainty. However, the propensity of noun phrases to contain a noun 
will, presumably, be rather greater than, for example, the propensity of noun-phrases to (directly) 
contain a verb, or of other phrases to contain a noun. In other words, for any given phrase there 
is a probability distribution over the objects which can be its immediate constituents, which we can 
call the dominance, probability. By a similar argument, there is also a probability distribution over 
the ordering of items in a phrase which we can call the precedence probability. Thus an ID/LP 
grammar which uses probabilities is a probabilistic ID/LP grammar, or P-ID/LP. 

Computing the probability of a sentence 

In order to use a P- ID/LP grammar analogously to a I ' -CFG we need to establish a way of com- 
puting the probability of a sentence, given the probability of I13 and l,P rules. The likelihood of 
the derivation of a sentence, W, from the topmost distinguished symbol, S, for an ID/LP grammar, 
can be determined from the independent likelihoods of each step in the derivation. Each step is the 
result of replacing some non-terminal symbol by some other terminal and non-terminal symbols, 
(the dominance relation), and the result of rearranging those derived symbols in the desired order 
(the precedence relation). 

Thus, in the derivation o f  the sentence S ~  W there is a .sequence of individual steps, which may 
result in a derivation .,erich as 

S~. . .~xAy~xBCy.~. . .~wlw2. . .w " 1. W 

The immediate dominance rule A --* B, C has been used to generate xBCy from xAy at the inter- 
mediate step indicated. "rhat is, the A was replaced by a B and a C without reference to their order. 
This rule is considered to have the conditional probability Po(B, C] A) , or the dominance proba- 
bility of B3 and C given ,4. Since this would have allowed both the rewriting B C, and CB, the 
precedence rule B<C must also have been used. "rhis rule is considered to have the probability 
Pe(B'< C) , or the precedence probability of B before C. If the probability of the string xAy is 
P(xAy), then the probability of the string xBCy can be considered to be 
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P(xBCy)- l~xAy). Po(B, CIA). P~B,< C) 

Thus, the derivation is treated as a stochastic process involving independent probability distrib- 
utions governing the symbols which are produced in each step, and the order of the symbols. The 
result is the simple stochastic proofs  conventionally modelled as production rule probabilities. 
The probability of a single derivation of W from 5 is denoted by P(WIS, a~), where ~ represents 
the i-th derivation. It is calculated from the product of all the individual steps in the derivation, 
and is clearly independent of the order of appfication of the individual steps in the derivation. The 
total probability of the word string W, or P(W]~, is the sum of all the separate derivations from 
3 to W, or ~P(WI 3, ¢~). The more useful quantity in parsing is the derivation for which the 
probability is'the greatest, or the max P(W] 3, a~) . This derivation is the most likely derivation, 

I 
and thus defines the parse tree to be selected for the given sentence. 

The general idea can be extended, in a straightforward way, not described here, for the case of un- 
restricted rules, where there are an unlimited number of symbols on the fight hand side of a 
context-free rule. In this case the longer rules are modelled as successive appfications of shorter 
rules. The advantage of this decomposition is that the size of the rule sets are to some extent 
governed by the size of the symbol set chosen, and do not involve the huge tail of low frequency 
rules typical of P-CFG grammars. For example, if there are n non-terminal symbols in the gram- 
mar, there can only be tO precedence relations between them, and an estimate of all of them can 
be made, avoiding the problem of unknown rules. Similarly the number of dominance rules is also 
restricted over the equivalent number of conventional phrase structure rules. 

Determining P-ID/LP grammatical relations 

The values of the probability of each dominance and precedence rule must be known so that 
parsing can take place according to the scheme described above. These values can be determined 
either by observation, or by training. 

In order to determine the values by observation, a large corpus of pre-analysed sentences can be 
inspected, and the dominance and precedence frequencies can be determined by counting. From 
these frequencies it is simple to compute the dominance and precedence probabilities. 

Alternatively, values of the dominance and precedence probabilities can be determined by assuming 
some arbitrary initial estimate, and training on a corpus, in a way similar to that used in the 
Inside-Outside algorithm. This involves computing the likelihood of the topmost label, 3 produc- 
ing each observed sentence, W, and collecting counts of observed dominance and precedence re- 
lations, which are then used to re-estimate the probabilities of dominance and precedence. This 
re-estimation can be done many times, until satisfactory estimates of the true probabilities are ob- 
tained. 

Since a suitable corpus of pre-parsed sentences was available the first method was used for sim- 
plicity. This is called adapting the grammar to the corpus, to distinguish it from training which is 
the technical term used for estimates derived from iterative re-estimation algorithms. 

Creating a P-ID/LP parser 

The probability of a sentence can be calculated in an entirely analogous way to that done for 
P-CFG's, by using a modified form of the CKY algorithm. The CKY table holds a place for the 
probability of every possible substring which the grammar produces for a given sentence. This is 
calculated from the bottom up, re-using already completed calculations where necessary. The 
computational complexity of this task is known to be related to the cube of the sentence length (see 
[lopcrcfft, 1979), which is at least a polynomial calculation, rather than an exponential one. 
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T~aniques for thresholding the computation can he used to speed up the parser. Because there 
can be fewer relations to compute than there might be rules in a P-CFG the parser may be faster. 

Using a P-ID/LP grammar to parse English 

This section describes an experiment to determine if P-ID/LP parsing, in the manner described 
above, is a useful technique. The necessary grammatical relations were obtained from a coUection 
of unrestricted sentences of English taken from the Associated Press (AP) newswhe material, con- 
sisting of about one million words of text, with a vocabelary of about 50,000 words, The sentences 
were available in a pre-parsed form, called a treebank, with about 45,000 different phrase types 
marked by the manual parsers. A simple CFG could require as many rules as phrase types to rep- 
resent the complexity shown in this data. The trcebank was used to determine the values of 
dominance and precedence probabilities, and to test the output of the parser. For these purposes 
the original treebank was divided into two equal parts, so that a grammar derived from one part 
could be tested on the other. A modified CKY parser was used to parse the sentences with the 
P-ID/LP grammar, and to select the most likely parses. The resulting system has the ~pability to 
parse any sentence of English, although it is adapted specifically to the AP corpus. 

The foUowing steps were taken: 

1. A restricted set of 16 non-terminal symbols were derived from the 64 actually used in the 
treebank. 

2. A restricted set of 100 terminal symbols were derived from the 264 actually used in the 
trcebank. 

3. The trcebank was divided into two parts, one for adapting the grammar, and one for testing. 
4. The word list of the adapting data was extracted, with the unigram frequency of each word, 

and the tag attached to the word. This word llst is used to create: 
a. A lexicon of word-to-tag correspondences, with the unigrarn probability of each entry. 

This is used to generate the probability of tag assignments to words when those words are 
found in a sentence to be parsed. 

b. A probability distribution over terminal tags. This is used to predict the tag of a word in 
a sentence, when that word does not appear in the lexicon. 

5. Initial estimates of the dominance relations for non-terminal symbols were derived from the 
treebank. 

6. Initial estimates of the precedence relations for non-terminal and terminal symbols were de- 
rived from the trcebank. 

A variant of the CKY parser for unrestricted rules was used to compute the probability of each 
sentence. The completed parse includes the most likely tab assigned to each word, and the most 
likely constituents hypothesised over the substrings of the sentence. The best parse can be displayed 
as a conventional parse tree. 

The results 

A test set of 42 sentences was chosen at random, subject only to the restriction that the sentence 
length was less than 30 words. The average sentence length was 20 (as opposed to 23 for the AP 
as a whole). These sentencas were parsed, and the results compared with manual analyses of the 
same sentences. For the purposes of comparison, parses were divided into the following classes to 
show the accuracy of the parse, relative to the manual parse: exact match; close approximation; 
incorrect parse; failed parse. Some examples of these categories are given in the Appendix, to show 
the type of assessment which has been made. 
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The sentences were parsed in four ways: using a grammar which was unadapted(Gl) or 
adapted(G2), and using a lexicon which was unadapted(Ll) or adapted(L2), the adaptation being 
to the sample from which the test sentences were drawn. It would be expected that the system 
should do well on data which it was adapted to, and less well on data it was no adapted to. The 
resulting parses were manually inspected for errors. 

The results for tagging are as follows: 

+ ...................... + ........ + ....... + ....... + ....... + 

I TAGGING ] GI,L1 l G1,L2 J G2,L1 ] G2,L2 ] 

+ ...................... + ........ + ....... + ....... + ....... + 

Jcorrect tags I 660 J 789 I 658 I 779 I 
Javg. c o r r e c t  t a g s / s e n t i  15.7l 18.8[ 15.6[ 18.5J 
[~ t a g s  c o r r e c t  J 80 J 96 ] 80 J 95 J 
+ ...................... + ........ + ....... + ....... + ....... + 

The results for parsing are as follows: 

+ ...................... + ........ + ....... + ....... + ....... + 

J PARSING J GI,L1 J G1,L2 I G2,L1 J G2,L2 J 
+ ...................... + ........ + ....... + ....... + ....... + 

] c o r r e c t  p a r s e s  J 8 I 10 I 12 J 18 J 
Js~ilar p a r s e s  J 17 J 22 J 20 J 19 J 
]wrong p a r s e s  [ 13 J 10 J 6 J 5 J 
]failed parses J 6 J 0 J & J 0 J 
+ . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . .  + . . . . . . .  + . . . . . . .  ÷ . . . . . . .  + 

The worst performance is the unadapted grammar and lexicon, and the best performance is the 
adapted grammar and lexicon. The adapted grammar with an unadapted lexicon, and the una- 
dapted grammar with an adapted lexicon, are in between, and about as good as each other. On the 
basis of this data there is no reason to distinguish between these latter two cases. 

C o n c l u s i o n s  

Initial results indicate that tagging accuracy is quite good, but that parsing accuracy is less good. 
This should of course be compared to the performance of other parsers and grammars on material 
of similar complexity. 

The performance of this system as a tagging tool is similar to a word tagging system using a I lidden 
Marker Model. Such a system would expect an error rate of no more than 5%, and perhaps as low 
as one or two percent. An exact comparison would have to take into account a consideration of 
the actual tags appfied, the type of text used. 

The performance of the system in parsing is not quite as successful as one would like, but there is 
some satisfaction to be obtained from the fact that correct, or nearly correct, parses account for 
60% of the total even for the unadapted grammar, rising to 76% for the intermediate cases, and 
88% for the fully adapted system. A large number of the causes of error can be seen to be related 
to semantic and pragmatic issues which the model does not, by definition, address. This holds out 
hope that the method may be capable of improvement by terming the precision of the relations 
modelled. 

Some specific causes of imperfect parses were due to the choice of non-terminal symbols. The 
treebank symbols, while being perfectly adequate for manual parsing, are insufficiently precise for 
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an automatic system to distinguish between different categories of phrase. Either a better set of 
non-terminal symbols should be used, or features should be used to make existing categories ca- 
pable of carrying freer distinctions. 

Also, the precedence and dominance relations chosen are insufficiently precise to give good results. 
For example, the pn_.cedence relation is determined over all non-terminal symbols. It is possible 
that the order of symbols in some group of phrases is different than the order in another group, and 
that different precedence relations could express this. 

It is planned to relax these restrictions in future work. 
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Appendix - Examples of parse classification 

The ofional sentence is shown (h~dicated by the prefix $:), with the manual parse(indicated by the 
prefix M:), and the automatic parse (indicated by the prefix A:). Part of speech tags have been re- 
moved for clarity. Each phrase is marked by a bracket pair which is labelled according to the type 
of phrase delimited. The labclfing on the brackets should be serf-explanatory, with N referring to 
a noun-pht~e, V a verb-pht~e, P a prepositional-phmze, and so on. 

Exact match 

The parse produced is an exact match of the hand parsed sentence, except for certain totally pre- 
dictable typographical conventions. 

S: But c a s i n o  p r o f i t s  p l -n~ ,e ted  . 
M: But iN c a s i n o  p r o f i t s  N] iV plummeted V] 
A: iS But iN c a s i n o  p r o f i t s  N] iV plummeted V] . _ .  S] 

Equivalent parse 

The parse produced is a reasonable parse of the sentence, and could have equally well been 
produced by the manual analysis. 

S: The c i t y  has about  900 f i r e f i g h t e r s  
M: [N The c i t y  N] iV has iN about  900 f i r e f i g h t e r s  N] V] :_. 
A: [S[N The city N] [V has [P about IN 900 firefighters N] P] V] ._. s ] ]  

Prepositional phrase attachment problem 

The parse is essentially correct, but a prepositional phrase has been attached in the wrong place, 
or has the wrong scope. 

S: The pancreas , in addition to making digestive enzymes , is 
the body organ that produces insulin , a hormone that 
controls the level of sugar in the blood . 

M: iN The panc reas  N] , [P in  iN a d d i t i o n  [P to  [Tg making iN 
d i g e s t i v e  enzymes N] Tg] P] N] P] , iV i s  iN the  body 
organ  [Fr  t h a t  iV p roduces  iN i n s u l i n  , iN a hormone [Fr  
t h a t . i V  c o n t r o l s  iN t he  l e v e l  [P o f  iN sugar  S ] P ]  {P in  iN 
the blood N] P]N] V] Fr] N] N] V] Fr] N] V] 

A: iS iN The panc reas  N] , [P in  iN a d d i t i o n  [P to  iV making 
iN d i g e s t i v e  enzymes N] V] P] N] P] , iV is  iN t he  body 
organ  [Fr  t h a t  iV p roduces  iN i n s u l i n  N] V] Fr] N] V] , iN a 
hormone [Yr t h a t  iV c o n t r o l s  [N t he  l e v e l  [P o f  iN sugar  [P 
in  iN t he  b lood  N] P] N] P ] N ]  V] Fr] N] S] 

Coordination problems 

The parse is essentially correct, but a coordinated phrase has coordinated item of the wrong scope. 

273  



S: The bacteria can be transmitted in water and from bodies of 
dead b i r d s  , 

M: [N The bacteria N] [V can be transmitted [P [P& in [N water 
N] P&] and [P+ from [N b o d i e s  [P of [N dead birds N] P] N] 
P÷] p] v] 

A: [S [N The bacteria N] [V can be transmitted [P in [N water 
[ and [P from [N bodies [P of [N dead birds N] P] N] P] ] 
N] P] v] s] 

Problems with commas 

The parse is essentially correct, but a wrong decision has been made over the interpretation of one 
or more commas. 

S: At g a r e n ' s  C o l l e c t a b l e s  , owner Karen Walker  had a p r e s e n t  
f o r  Kennedy , a s t e r l i n g  s i l v e r  t i e - t a c k  in  t h e  image o f  
John Kennedy . 

lq: [P At [N [G K a r e n ' s  G] Collectables N]P] r[N owner IN 
Karen Walker N] N] IV had [N a present [ P f o  [N Kennedy N] 
P] , [N a sterling silver tie-tack [P in [N the image [P of 
[N John Kennedy N ] P ]  N] P] N] N] V] 

A: [ S [ P  At [N [G K a r e n ' s  G] C o l l e c t a b l e s  N] P] , [N owner 
Karan Walker  [ had [N a p r e s e n t  [P f o r  [N Kennedy N] P] N] 
] N] ,_, IN a sterling silver tle-tack [P in [N the image 
[P of [N John Kennedy N] P] N]P] N] S] 

Wrong Parses 

The bestp~se ~ u n d i s n o t t h e  fight parse. 1~¢ manualparscisconsideredtobcthe fight parse. 

S: Oil-state senators are trying to block an amendment to the " 
windfall-proflts " tax that would cost the oll industry 
$22.5 billion over the next decade . 

M: [N O i l - s t a t e  s e n a t o r s  N] IV a r e  t r y i n g  [T i  t o  b l o c k  [N an 
amendment [P t o  IN t h e  " w i n d f a l l - p r o f i t s  " t a x  [F r  t h a t  [V 
would cost [N the oll industry N] [N $22.5 billion [P over 
IN the next decade N] P] N] V] Fr] N] P] N] Ti] V] 

A: (S [N O i l - s t a t e  s e n a t o r s  N] [V a r e  t r y i n g  [T i  t o  b l o c k  [N an 
amendment N] t o  [N t h e  N] T t ]  V] " [ S t  w i n d f a l l - p r o f i t s  " [N 
t a x  [F r  t h a t  [V would  [ c o s t  [N t h e  o i l  i n d u s t r y  [P $22.5  
IN b i l l i o n  [P o v e r  [N t h e  n e x t  d e c a d e  N] P] N] P] N] ] V] 
Fr]  N] Si ]  S] 

It is worth noting that even in the case of the so-called wrong parse there is much to commend the 
attempt. I lowever, it is the judgement here that the parse is not sufficiently accurate to place further 
judgements on, and so it has been classiticd as wrong. 

Failed Parses 

No parse is found. This usually occurs because the thresholding technique used to speed up the 
calculation by eUminating low probability parses has eliminated all remaining parses. It is often a 
result of incomplete lexical and grammatical knowledge. 
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