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ABSTRACT 
This paper describes recent work on the Unisys ATIS Spo- 

ken Language System, and reports benchmark results on nat- 
ural language, spoken language, and speech recognition. We 
describe enhancements to the system's semantic processing 
for handling non.transparent argument structure and enhance- 
ments to the system's pragmatic processing of material in art. 
swers displayed to the user. We found that the system's score 
on the natural language benchmark test decreased from ~8~o to 
36~ without these enhancements. We also report results for 
three spoken language systems, Unisys natural language cou- 
pled with MIT-Summit speech recognition, Unisys natural lan- 
guage coupled wish MIT-Lincoln Labs speech recognition and 
Unisys natural language coupled with BBN speech recognition. 
Speech recognition results are reported on the results of the 
Unisys natural language selecting a candidate from the MIT- 
Summit N-best (N=16). 

I N T R O D U C T I O N  
Improving the performance of spoken language systems re- 

quires addressing issues along several fxonts, including ba- 
sic improvements in na tura l  language processing and speech 
recognition as well as issues of integrat ion of these compo- 
nents in spoken language systems. In  this paper  we report  the 
results of our recent work in each of these areas. * 

One major  area of work has been in the the semantic and 
pragmat ic  components of the Unisys na tura l  language process- 
ins  system. The work in semantics enhances the robustness 
of semantic processing by allowing parses which do not di- 
rectly express the argument structure expected by semantics 
to nevertheless be processed in a rule-governed way. In the 
area of pragmatics  we have extended our techniques for bring- 
ing mater ia l  displayed to the user into the dialog context to 
handle several addi t ional  classes of references to mater ia l  in 
the display. 

• This work was supported by DARPA contract N000014-89- 
C0171, administered by the Office of Naval Research. We are grate- 
fuI to Victor Zue of MIT, Doug Paul of MIT Lincoln Laboratories 
and John Mak.houl of BBN for making output from their speech 
recognition systems available to us. We also wish to thank Tim 
Finln, Rich Fritzson, Don McKay, Jim Meldlnger, and Jan Pastor 
of Unisys and Lynette Hirschnmn of MIT for their contributions to 
this work. 

In the area of integrat ion of speech and natura l  language, we 
report  on an experiment with three spoken language systems, 
coupling the same Unisys na tura l  language system to three 
different speech recognisers as shown in Figure 1. 
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Figu re  1: U n l s y s  n a t u r a l  l a n g u a g e  + m u l t i p l e  
s p e e c h  r e c o g n l s e r s  

We believe this is a very promising technique for evaluat- 
ing the components of spoken language systems. Using this 
technique we can make a very straightforward compe~ison of 
the performance of the recognizers in a spoken language con- 
text.  Furthermore,  this technique also allows us to make a 
fine-gralned comparision of the interact ion between speech and 
natura l  language in the three systems by looking at  such ques- 
tions as the relative propor t ion of speech recognizer outputs 
that  fail to parse, fall to receive a semantic analysis and so on. 

Finally, we repor t  on speech recognition results obtained by 
filtering the N-best (N=16) from MIT-Summlt  through the 
Unisys na tura l  language system. We note tha t  there was a 
higher error rate  for context-dependent speech as compared to 
context-independent speech (54.6% compared to 45.8~) and 
suggest two hypotheses which may account for this difference. 

SEMANTICS 
When evaluating our system after the Hidden Valley work- 

shop, we observed two phenomena about  PUNDIT (the Unlsys 
natt tral  language understanding system [3]) that  warranted 
improvement.  The first was tha t  PUNDIT's semantic inter- 
preter  was sometimes fA;llng to correctly recognize predicate 
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argument relationships for syntactic consti tuents that  were 
not immediate ly  associated with their intended head. The sec- 
ond was that  PUNDIT was producing different representations 
for queries with different syntact ic / lexical  content but  identi- 
cal (or nearly identical)  semantic content.  We see both of these 
shortcomings as due to what  we will t e rm "non-transparent  
argument s t ructure":  syntact ic  representations in which syn- 
tactic consti tuents are not  associated with their intended head, 
or semantic representat ions in which predicate-argument re- 
lationships are underspecified. Our approach to dealing with 
these shortcomings has been to mainta in  a rule-governed ap- 
proach to role-filling despite non-transparent  syntactic and 
semantic structures.  We believe tha t  the extensions we are 
about  to describe are especially relevant to Spoken Language 
Understanding,  because non-transparent  argument structure 
appears to be par t icular ly  characterist ic of spontaneous spo- 
ken utterances,  for reasons we will sketch below. 

T h e  s e m a n t i c  i n t e r p r e t e r  a n d  n o n - t r a n s p a r e n t  p a r s e s  

Semantic in terpre ta t ion in PUNDIT is the process of instan- 
t ia t ing the arguments  of case frame structures called decom- 
positions,  which are associated with verbs and selected nouns 
and adjectives ([7]). The arguments of decompositions are 
assigned themat ic  role labels such as agent,  pat ient ,  source, 
and so forth. Semantic in terpreta t ion is a search for suit- 
able grammat ica l  ro le / themat ic  role correspondences, using 
syntax-semantics mapping rules, which specify what syntac- 
tic consti tuents may  fill a par t icular  role; and semantic class 
constraints,  which specify the semantic propert ies  required of 
potent ia l  fillers. The syntact ic  constraints on potent ia l  role 
fillers are of two types: CATEGORIAL constraints,  which re- 
quire tha t  the potent ia l  filler be of a certain grammat ica l  type 
such as subject ,  object ,  or preposi t ional  phrase; and ATTACH- 
MENT constraints,  which require tha t  the potent ia l  filler occur 
within the phrase headed by the predicate of which i t  is to be 
an argument.  The categorial  constraints are s ta ted  explicit ly 
in the syntax-semantics mapping rules; the la t te r  are implicit  
in the functioning of the semantic interpreter .  For example, 
the source role of flight_C, the domain model  predicate as- 
sociated with the noun "flight", can, in accordance with the 
syntax-semantics mapping rules, be filled by the enti ty associ- 
a ted with the object  of a " f rom ' -pp  occurring within the same 
noun phrase as "flight" (The flight from Boston takes three 
hours). Unfortunately,  the parse does not always express the 
argument s tructure of the sentence as t ransparent ly  as it  does 
in this example; consti tuents tha t  should provide role fillers 
for a predicate are not  always syntact ical ly associated with 
the predicate.  There are several causes for such a mismatch 
between the parse and the intended interpretat ion.  They in- 
clude ( l )  a variety of syntact ic  deformations which we will 
refer to as extraposi t ion ( What flights do you have to Boston, 
where the " t o ' - p p  belongs in the subject  np; I need ticket in- 
formation from Boston to Dallas, where the pp 's  modify the 
prenominal  noun "t icket",  not  the head noun "information"; 
or I toant a cheaper flight than Delta 66, where the " t h a n ' - p p  
modifies "cheaper",  not  "flight"), (2) metonymy ( I  toant the 
$50.00 flight, where the speaker means that  s /he  wants the 
flight whose FARE is $50.00), and (3) subopt imal  parses (e.g., 
parses with incorrect pp-a t tachment) .  

Our changes to the semantic interpreter  allow it to fill roles 
correctly in cases such as the above, uti l is ing its existing 
knowledge of syntax-semantics correspondences, but  relaxing 
certain expectat ions about  the syntactic a t tachment  of role- 
filling constituents.  Thus the CATEGORIAL constraints remain 
in force, but  the ATTACHMENT constraints have been loosened 
somewhat.  The system now identifies preposi t ional  phrases 
and adverbs which have not frilled a role in the predicate with 
which they are syntact ical ly associated, and offers them as 
role fillers to fillers of this predicate.  This s t rategy applies re- 
cursively to fillers of fillers of roles; for example, in What types 
of ground transportation services are available from the air- 
port in Atlanta to downtown A tlanta f , the two final pp 's  ulti- 
mate ly  fill roles in the decomposit ion associated with "ground 
t ranspor ta t ion"  since neither  "types" nor "services" has map- 
ping rules to consume them. The same mechanism already in 
place for role-filling is employed in these cases, the only differ- 
ence being that  unused syntact ic  consti tuents are propagated 
downward. Note tha t  we continue to take syntax into account; 
we do not  wish to ignore the syntax of leftover constituents 
and fill roles indiscriminately on the basis of semantic proper- 
ties alone. 

We conducted an experiment to assess the effects of these 
changes upon the system's  performance,  using a set of 138 
queries (both  class A and non-class A) on which the system 
was previously trained.  The measure of performance used was 
the s tandard  ATIS metr ic  of the number of correct answers 
minus the number incorrect.  Disabling the semantic changes 
described above lowered the system's  score from 82 to 63, a 
decrease of 23~.  

T h e  a p p l i c a t i o n  m o d u l e  a n d  n o n - t r a n s p a r e n t  s e m a n t i c  
r e p r e s e n t a t i o n s  

Our second improvement was directed at  cases where PUN- 
DIT's semantic interpreter  may have correctly represented the 
meaning of a sentence but  in an irregular way. For exam- 
pie, the ins tant ia ted  decomposit ion produced for "flights from 
Boston" is: 

f i i g h t _ ¢  ( ~ i i g h t l ,  s o u r c e  (bos ton )  . . . .  ) 

while "flights leaving Boston" resulted in: 

~ l i g h t  C ( f l i g h t  1, s o u r c e  ( _ ) ,  . . . )  
loavoP ( l s a v e l ,  

f l i g h t  ( f l i g h t  1 ) ,  
s o u r c e  (boston), . . . )  

Clearly i t  would be preferable for the flight_C decomposition 
to be the same in both  cases, but  in the second case the source 
role of the decomposit ion associated with fl ightl  was unfilled, 
although it  could be inferred from the leaveP decomposition 
that  the flight's source was Boston. In other words, PUNDIT 
had not captured a basic synonymy relat ion between these 
np's.  

Our response to this was to augment the semantic inter- 
preter  with a routine which can perform inferences involving 
more than one decomposition.  The actual  inferences are ex- 
pressed in the form of rules which are domain-dependent;  the 
inference-performlng mechanism is domain-independent .  For 
the above example, we have wri t ten  a rule which, paraphrased 
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in English, says that if a verb is one of a class of motion verbs 
used to express flying (e.g., "leave"), and if the source role of 
this verb is filled, propagate that  filler to the source role of 
the flight involved. Thus the flight_C decomposition becomes 
the same for both inputs.  Thirty-four such rules have been 
writ ten for the ATIS domain, and we estimate that they are 
applicable to 10% to 15% of the training data. 

The payoff from this extension comes in the use of PUNDIT's 
output by application modules. For the ATIS domain, the ap- 
plication module is the program that takes PUNDIT's output 
and uses it to formulate a query to the ATIS DB. It is obviously 
advantageous for the creation and maintenance of an applica- 
tion module that  its input  be regularized to the greatest extent 
possible, thus making such a module simpler, and avoiding du- 
plication of code to compensate for non-regularized input  in 
different application modules. 

When we ran the same set of 138 queries used in the exper- 
iment described in the previous subsection without the rules 
just  discussed (but with the semantics improvements of the 
previous subsection), the system's score dropped from 82 to 
62, or 24%. There appears to be little interaction between the 
semantics improvements and the rules of this subsection-they 
apply to different phenomena in input  data. 

P R A G M A T I C S  
In our June 1990 workshop paper ([6]), we described a fea- 

ture of our system which we included to handle correctly a 
particular kind of discourse phenomenon. In particular, in the 
ATIS domain there are frequent references to flights by flight 
nnmher (e.g., "Delta flight 123") which the user means to be 
unambiguous, but  which in general have to be disambiguated 
in context. The reason is that the user learned about "Delta 
123" from some previous answer, where it was returned as one 
of the flights between two cities City1 and City2. The problem 
is that "Delta 123" may have additional legs; for instance it 
may go on from City2 to City3. The user, when asking for 
the fares for "Delta 123", is presumably interested only in the 
City1 to City2 fare, not the City2 to City3 one and not the 
City1 to City3 one. So our system looked back at previous an- 
swers to find a mention of "Delta 123", thereby determining 
the flight leg of interest. 

This kind of disamhiguation can take other forms, and we 
have added some of them to our system since June. One of 
these capabilities is i l lustrated by the two queries W h a t  does 
L H  m e a n f  and  W h a t  does E Q P  m e a n f  Without context, 
the first of these cannot be correctly answered, because "LH" 
is a code for both an airline and a fare class. The second 
of these queries would yield a table with two rows, one row 
for each table for which "EQP" is one of the table's column 
headings. In both of these queries, however, the user is asking 
for clarification of something which has been presented as part 
of a previous answer display. So what our system needs to 
do, and does do, is refer back to previous answers much in 
the spirit of the "Delta 123" example above. For the first 
query, we will find the most recent answer which has "LH" as 
a column entry in some row: for the second we will find the 
most recent answer which has "EQP" as a column heading. 
Our system can then make the proper disambiguation and 

present the user with an appropriate cooperative response to 
the follow-up query. There were only a handful of follow-up 
queries of this form in the training data, hut  the extension to 
handle them was easy to add given the code in place to handle 
the "Delta 123" example. 

Similarly, the training data contained numerous instances 
of queries such as W h a t  are the c l a u e s .  ~ In  the absence of 
context, the best answer to this seems to be a llst of the more 
than 100 different fare classes. However, queries such as these 
invariably follow the display of some fare classes in either flight 
tables or fare tables. The cooperative response, then, is to dis- 
play a table of fare classes whose rows have been limited to 
those classes previously ment ioned in the most recent flight 
or fare table.  Our system also uses a generalization of this 
algorithm to filter requests for other kinds of codes, such as 
restrictions, ground transportat ion codes, aircraft codes, and 
meal codes. In all, from the TI  training data ([2]) we have 
noticed 19 follow-up queries (out of 912) which now get the 
correct answer in context because of this extension to our sys- 
tem; there may be more queries which requite this extension 
that  we have not yet processed correctly for other reasons. 

We make it possible to refer to previous answer tables in 
our system by means of the following mechanism. Whenever 
an answer table is returned, a discourse entity representing it 
is added to the discourse context, and a semantics for this en- 
tity is provided. Roughly speaking, if the query leading to the 
answer table is a request for X, the semantics can be thought 
of as being "the table of X" ([6]). For example, if the query 
was a request for flights from City1 to City2, the semantics as- 
signed to the discourse entity representing the answer is "the 
table of flights from City1 to City2". Note that  we do NOT 
create discourse entities for each row (particular flights from 
City1 to City2 in the example) or for each column entry in a 
row (e.g., the departure time of a particular flight from Cityl  
to City2). Doing so would make the discourse context munan- 
ageably large. But the table (complete with column headings) 
is available and accessible to our system, and can be searched 
for particular values when it is desirable to do so, as in the 
capabilities being described in this section. 

The techniques just  described depend on the availability 
of previous ANSWERS. Some of the follow-up queries which 
they enable to be answered correctly could perhaps be han- 
dled by reference to previous QUERIES only, particularly in 
the special case where there is known to be only one previous 
query. We believe that our techniques are superior for at least 
two reasons. First, in the presence of more than one previous 
query, the answers to those previous queries are for our system 
a more compact and modular representation of the content of 
those queries than the discourse entities created while analys- 
ing the queries themselves; in short, it is simply easier to find 
what we want in the answers rather than in our representa- 
tions of the queries. Second, there are follow-up queries which 
cannot he answered unless reference is made to previous an- 
swers, so such techniques are necessary in a complete system. 
Therefore, why not use them whenever they can be used, even 
when alternative techniques might be available? 

The February 1991 D1 pairs test, which limited context de- 
pendency to dependency which could be resolved by examina- 
tion of a single previous query (and not its answer), provides 
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additional data on the applicability of these methods. In par- 
ticular, 27 of the 38 pairs involved the disambiguation of a 
flight number to the flight leg of interest. It appears that four 
additional queries can be successfully answered by the tech- 
nique we discussed above for handling the query What are 
the classes? The remaining 7 queries appear to be such that 
reference to previous answers is not helpful. 

S P O K E N  L A N G U A G E  S Y S T E M S  
We describe here the five spoken language tests in which 

we participated. Our methodology in these tests has been to 
couple the speech recognition output  from different recogniz- 
ers to the same natura l  language processing system. Because 
the natural  language component and the application module 
are held constant in these systems, this methodology provides 
us with a means of comparing the performance of speech rec- 
ognlzers in a spoken language context. 

Class  .A: UnSays PUNDIT s y s t e m  c o u p l e d  w i t h  M I T  
S u m m i t  

The spoken language system used in this test consists of the 
Unisys PUNDIT natura l  language system coupled via an N-best 
interface to the MIT SUMMIT speech recognition system. We 
will refer to this system as Unisys-MIT. These results were run 
with N=16, except for 4 utterances which could not be run  
at N=16 because of insufficient memory in the speech recog- 
ni t ion system. N = I  was used for these utterances. SUMMIT 
produced the N-best and PUNDIT selected from the N-best the 
most acoustically probable utterance which also passed PUN- 
DIT's syntactic, semantic, and pragmatic constraints. PUNDIT 
then processed the selected candidate to produce the spoken 
language system output.  The value of N of 16 was selected on 
the basis of experiments reported in [1], which demonstrated 
that using larger N's than 10-15 leads to a si tuation where the 
chance of getting an F begins to outweigh the possible benefit 
of additional T's .  

The SUMMIT system is a speaker-independent continuous 
speech recognition system developed at the MIT Laboratory 
of Computer Science. It is described in [10]. 

U n l s y s  PUNDIT c o u p l e d  w i t h  L i n c o l n  Labs  S p e e c h  Rec -  
o g n i z e r  

The spoken language system used in this test consists of the 
Unisys PUNDIT natura l  language system loosely coupled to the 
MIT Lincoln Labs speech recognition system. The Lincoln 
Labs system selected the top-1 output,  which PUNDIT then 
processed to produce the spoken language system output.  

The LincoLn Labs system is a speaker independent continu- 
ous speech recognition system which was trained on a corpus 
of 5020 training sentences from 37 speakers. It used a bigram 
backoff language model of perplexity 17.8. The system is de- 
scribed in more detail in [8]. 

Class  A:  U n l s y s  PUNDIT s y s t e m  c o u p l e d  w i t h  B B N  BY- 
BLOS 

In this test N-best output  from the BBN BYBLOS system as 
described in [4] was input  to PUNDIT. As in the system which 
used the MIT N-best, we used an N of 16. The N-best from 

Class Number T F Score 

Class A 145 queries 84 14 48.3~ 
Class D1 38 pairs 24 0 6 3 . 2 ~  
Class AO 11 queries 1 0 9.1% 
Class D10  2 pairs 0 1 -50% 

Table  1: U n i s y s  S y s t e m  S c o r e s  

BBN was the output  from BYBLOS rescored using cross-word 
models and a 4-gram model and then reordered before input 
to the natural  language system. 

O p t i o n a l  Class  A Tes ts  

We also report on spoken language results on the optional 
class A test, using both  the Unlsys-MIT system and the 
Unisys-BBN systems described above. 

S P E E C H  R E C O G N I T I O N  T E S T S  
The speecli recognition tests were done using the natural  

language constraints provided by the Unisys PUNDIT natu- 
ral language system to select one candidate from the N-best 
output of the MIT Laboratory of Computer Science SUMMIT 
speech recognition system. Using an N of 16, PUNDIT selected 
the first candidate of the N-best which passed its natura l  lan- 
guage constraints based on syntactic, semantic and pragmatic 
knowledge. If all candidates were rejected by the natural  lan- 
guage system, the first candidate in the N-best was considered 
to be the recognized string. 

B E N C H M A R K  R E S U L T S  

N a t u r a l  L a n g u a g e  C o m m o n  Task  E v a l u a t l o n  

Unisys at tempted all four of the nature,] language tests; 
both the required and the optional class A and class D1 tests. 
Our scores as released by NIST are as shown in table 1. The 
overall level of success is unimpressive. For the class A test, 
which corresponds most closely to the test last June, our per- 
formance is not much better,  in spite of eight more months of 
work on our system. (If the scoring algorithm in effect now 
had been in effect in June, our score then would have been 
42.2Ye) As this paper is being written, we have not had the 
time to examine our performance on a sentence by sentence 
basis. It appears likely, however, that  the amount of train- 
ing data has not yet adequately covered the full range of the 
various ways that  people can formulate queries to the ATIS 
database. 

We are fairly pleased that  our "false alarm" rate has not 
gone up since June. It was 11% then; if we take the 196 sen- 
tences involved in the latest 4 tests as a single group, we find 
our rate of F 's  to be less than 8%. When we discuss our spo- 
ken language results in a subsequent section, we will see that 
although the rate of correct answers drops noticeably when a 
speech recognizer is added to the system, the rate of incorrect 
answers does n o t  appear to increase. The importance of a low 

128 



"false alarm" rate is well appreciated by spoken language un- 
derstanding researchers; from a user's point of view nothing 
could be worse than an answer which is wrong although the 
user may have no way of telling it is wrong. It will be im- 
portant  to lower the rate of such errors to a level well below 
S%. 

Our best performance came on the D1 pairs test. One would 
have expected a lower score on any test that  requires two con- 
secutive sentences to be understood than on a test of self- 
contained sentences. While we wish we could claim that our 
work discussed in the earlier section on pragmatics was instru- 
mental  in achieving our score, it appears that much of what 
we added to our system did not come into play in this test. 
A more likely explanation of the unexpectedly high score is 
that when a user queries the system in a mode which utilizes 
follow-up queries, he or she tends to use simpler individual 
queries. Perhaps a user who does not use follow-up queries is 
trying to put  more into each individual query. Some evidence 
for this is that  our score for just  the 20 distinct class A an- 
tecedent sentences for the D1 pairs test was 75%, well above 
our 48.3% score for all the class A sentences. Even more strik- 
ing is the fact that of the 9 speakers represented in this round 
of tests, only two contributed more than 3 pairs to the class 
D1 test-speakers CK and CO contributed 13 pairs each. Our 
scores restricted to just  those two speakers were 93~ for the 
class A test and 65% for the class D1 test (100% for speaker 
CO in the class D1 test!). 

The optional tests clearly were too small to have much sig- 
nificance. It is not surprising that  our system proved to be 
incapable at this point of dealing with extraneous words in the 
input queries, for we have made no efforts as yet to compen- 
sate for such inputs. These tests will be useful as a benchxnark 
for comparison after we have addressed such issues. 

S e m a n t i c s  E x t e n s i o n s  a n d  t h e  C o m m o n  Task  Tes ts  

In the section on semantics we reported the results of two 
experiments that we ran to assess the effects of extensions to 
our system. We performed the same tests using the data of 
the latest class A test of 145 queries. When the extensions 
to our semantic interpreter were removed, our performance 
dropped to 72 T, 19 F, or 36.6%, a decrease of 24% from our 
score of 48.3%. This reinforces our belief that these extensions 
are very important  and useful. When we ran the test without 
the rules relating multiple decompositions, our performance 
was 83 T, 14 F, or 47.6%, a decrease of less than 2%. This 
latter finding was most surprising-basically it implies that in 
the 1991 test data there were virtually no constructions of the 
kind which those rules enable us to process, because the ab- 
sence of the rules relating the decompositions corresponding 
to those constructions resulted in  almost no reduction in our 
score. In particular, there must have been no nouns modi- 
fied by relative clauses ("flights that  arrive before noon") or 
participial modifiers ("flights serving dinner"). This has some 
implication regarding the distribution of various forms of syn- 
tactic expression across speakers, for phenomena which were 
dearly significant in our training data apparently were absent 
from 9 speakers' worth of test data. 

The above experiments imply that  our system as of last 
June would have gotten a score of less than 35% on the cur- 

rent class A test, for the extensions discussed in the section 
on semantics were not the only improvements we have made 
to our system. This is another indication of variability among 
speakers; for our system the 5 speakers of last June's test 
were easier to process. It appears to us that  larger test sets 
are necessary to make a broad evaluation of natural  language 
understanding capabilities. (We do not extend this suggestion 
to tests involving speech input  because of the level of effort 
that would consume.) We have already noted the absence of 
relative clauses and participial modifiers in the recent class 
A test. We also noticed that  23 of 145, or 16%, of the sen- 
tences used the word "available", usually in constructions like 
"what X is available", while this word only appeared in 4% of 
the pilot training data. In  the class D1 test, there were few 
discourse phenomena represented, and we noted in an ear- 
lier section that over 70% (27 of 38) of the D1 pairs involved 
just  the phenomenon of flight leg disambiguation. Tests of 
such size, then, are not broadly representative of the range of 
query formulations in the ATIS domain. 

Related to the last point is the suspicion that the few thou- 
sand sentences of training data are themselves too few to rep- 
resent the range of user queries for this domain. We have 
noticed that fewer new words are appearing in the more re- 
cent sets of training data, so vocabulary closure is probably 
occurring. Even so, in the 145 class A queries of the recent 
test, our system found 12 with unknown words, or 8% of the 
queries. This was actually higher than the 5.5% we experi- 
enced with the test last June, but  that is more a comment on 
the variability due to small test size. It is an open question 
whether more and more training data is the answer to making 
our systems more complete, however. After all, larger volumes 
of data are both expensive to collect and expensive to train 
from. The lack of closure for the syntactic and semantic vari- 
ation in user queries presents a challenge for further research 
in spoken language understanding. It may we]] be that we will 
have to begin studying reasonable ways in which the variation 
in the range of user expression can be limited, without unduly 
contrainlng the user in the natura l  performance of the task. 

S p o k e n  L a n g u a g e  E v a l u a t i o n s  

U n i s y s - M I T  The spoken language results for this system 
were 29 T,  15 F, and 101 NA, for a weighted score of 9.7%. The 
system examined an average of 6.5 candidates in the N-best 
before finding an acceptable one. Of all candidates considered 
by the system, we found that  85~ were rejected by the syntax 
component and 3% by the semantics/praKmatics component, 
and 11% were accepted by both components. It should be 
pointed out that  the syntax component uses a form of com- 
piled semantics constraints during its search for parses ([5]), 
thus the resnlts for purely syntactic rejection are not as high as 
appears in this comparison, because some semantic constraints 
are applied during parsing. After a candidate is accepted by 
both syntax and semantics, the search in the N-best is termi- 
nated. However, the application component, which contains 
a great deal of information about domain-specific pragmatics, 
can also reject syntactically and semantically acceptable in- 
puts for which it cannot construct a sensible database query. 
In fact, a syntactically and semanticul]y acceptable candidate 
was found in 75% of the N-best candidate lists, but  a call was 
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made for only 30% of inputs.  The appl icat ion component was 
not able to rnal~e a sensible call for the remaining inputs.  

The false a larm (or F)  ra te  we observed in this test was 
around 10~,  which is consistent with our previous spoken lan- 
guage results ([1]) and with our na tura l  language results, as 
discussed above. 

U n i s y s - B B N  This  system received a score of 77 T,  20 F 
and 48 NA for a weighted score of 39.3%. In this system 
74% of all inputs  were rejected by syntax,  11% of inputs  were 
accepted by syntax but  rejected by semantics and 15~ were 
accepted by bo th  syntax and semantics. The false a larm rate  
is 13.8~, which is slightly higher but  in the same range as 
previous false a la rm rates.  

As can be seen in Figure 2, in general the system found an 
acceptable candidate  earlier in the N-best with the BBN N- 
best than with the MIT N-best .  The average location of the 
selected candidate  in the N-best  with the BBN da ta  was 3.8 
compared to 6.5 with the MIT N-best .  

Un i sys -LL  Using the top-one candidate  from the Lincoln 
Labs speech recognizer the spoken language results for this 
system were 32 T, 5 F and 108 NA for a weighted score of 
18.6~. The false a larm rate  for this system was only 3.4~,  
which is lower than that  for the other spoken language and 
na tura l  language systems on which we repor t  in this paper .  
There is no obvious explanat ion for this. The simple hypoth-  
esis of be t te r  speech recognition in the Unisys-LL system will 
not suffice, because the BBN system has be t te r  speech recog- 
nit ion but  the false a larm rate  is higher than the Unisys-LL 
rate.  In addit ion,  the Unisys system's  performance on the NL 
test  tells us how the system would do given perfect speech 
recognition, and the false a larm rate  there is around 8~ .  One 
possible hypothesis  is tha t  the b igram language model  used 
in the Lincoln Labs system is in some sense more conserva- 
tive than  the language models used in the BBN and MIT 

systems and consequently prevents some of the inputs  which 
might have led to an F in the na tura l  language system from 
being recognized well enough for the na tura l  language system 
to generate an F.  

In this system, based on one input  per  ut terance,  we found 
that  59% of the inputs  failed to receive a syntact ic  analysis 
(including compiled semantics, as discussed above) and 2% 
failed to receive a semantic analysis. No database  call could 
be generated for 13% of the inputs  and a call was made for 
the remaining 25~  of the inputs.  

E v a l u a t i o n  o f  t he  N a t u r a l  L a n g u a g e  S y s t e m  In [1] we 
repor ted  on a technique for evaluation of the na tura l  language 
component of our spoken language system, based on the ques- 
t ion of how often did the na tura l  language system do the right 
thing. If  the reference answer for an ut terance is found in the 
N-best ,  the right thing for the na tura l  language system is to 
find the reference answer (or a semantic equivalent) in the N- 
best  and give the right answer. The operat ional  definition of 
doing the right thing, then, is for the system to receive a "T" 
on such inputs.  On the other hand i f  the reference answer is 
not in the N-best the right thing for the system to do is to 
either find a semantic equivalent to the reference answer or to 
reject all inputs.  Thus, doing the right thing in the case of no 
reference answer can be operat ional ly  defined as "T" + " N A ' .  

Reference Reference 
in N-best  not in N-best  

Pundi t  r ight 54% 90% 
Pundi t  wrong 45% 10% 

O v e r a l l  

84% 
16% 

Tab le  2: PUNDIT's  p e r f o r m a n c e  o n  C l a s s  A ( 1 4 5  
q u e r i e s ) ,  d e p e n d i n g  o n  w h e t h e r  o r  n o t  r e f e r e n c e  
q u e r y  o c c u r r e d  i n  N - b e s t  ( N = 1 6 )  f r o m  M I T - L C S  
S P R E C .  

Reference Reference 
in N-best  not in N-best  Overall 

Pundi t  r ight 69~  81~  73~  
Pundi t  wrong 31% ] 19% 27~ 

T a b l e  3: PUNDIT's  p e r f o r m a n c e  o n  C l a s s  A ( 1 4 5  
q u e r i e s ) ,  d e p e n d i n g  o n  w h e t h e r  o r  n o t  r e f e r -  
e n c e  q u e r y  o c c u r r e d  i n  N - b e s t  ( N = 1 6 )  f r o m  B B N  
S P R E C .  

Several interesting comparisons can be made based on ta- 
bles 2 and 3. To begin with, i t  seems clear tha t  the BBN 
N-best is be t te r  than the MIT N-best  based on three quite 
dist inct  measures - first of all the speech recognition score is 
be t te r  (16.1% word error ra te  for BBN vs. 43.6~ word er- 
ror ra te  for MIT) ,  secondly, the spoken language score (with 
the na tura l  language system held constant)  for Unisys-BBN 
is be t te r  than Unlsys-MIT (39.3% for Unisys-BBN vs. 9.7% 
for Unlsys-MIT) and thirdly, the reference answer occurred 
in MIT ' s  top 16 candidates only 15~ of the t ime vs. 65% of 
the t ime for the BBN N-best .  Thus this experiment allows us 
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to ask the question of what effect does better  speech recogni- 
t ion have on the interaction between speech recognition and 
natural  language? 

In the case where the reference answer is in  the N-best, 
PUNDIT does much better  with the BBN N-best. Since less 
search in the N-best is required with BBN data the reference 
answer or equivalent is likely to be found sooner, and conse- 
quently there will be fewer chances for PUNDIT to find a syn- 
tactically and semantically acceptable sentence in the N-best 
which differs crucially from what was uttered. On the other 
hand, PUNDIT actually does better  with the poorer speech rec- 
ogniser output from MIT when the reference answer is not in 
the N-best. We suspect that  the poorer speech recognizer out- 
put is in some sense easier to reject; that is, it is more likely 
to seriously violate the syntactic and semantic constraints of 
English. If this is so then it is possible that  a relatively ac- 
cepting natural  language system might work wen with worse 
speech recognition outputs (because even a relatively accept- 
ing natural  language system can reject very had inputs),  but  
with better  speech recognizer output one might get good per- 
formance with a stricter natural  language system. We plan to 
test this hypothesis in future research. 

It is natura l  to ask why we should care about what to do 
with poorer speech recognizer output;  one would tlllnlc that 
we should use the best recognizer output possible. The answer 
is that  many potential  applications have requirements such as 
large vocabulary size which are somewhat at odds with high 
accuracy, consequently the best recognizer output available 
may nevertheless be relatively inaccurate. Thus it is important  
to have speech/natu.~al language integration strategies which 
allow us to fine tune the interaction to compensate for less 
accurate speech recognition. 

Op t iona l  Class A We used both the Unisys-MIT system 
and the UUIsys-BBN system for this test. For both speech 
recognizers in this test of eleven utterances with verbal dele- 
tions we received two T ' s  and sero F 's  for a weighted score of 
18.2%. There is too little test data in this condition to draw 
reliable conclusions from the results. 

C o m p a r i s o n  o f  S p o k e n  L a n g u a g e  S y s t e m s  

We believe coupling of a single natural  language system with 
multiple speech recognition systems has the potential for being 
a very useful technique for comparing speech recognizers in a 
spoken language context. Of course speech recognizers can he 
compared on the basis of word and sentence accuracy, but  we 
do not know how direct the mapping is between these mea- 
sures of performance and spoken language performance. The 
most direct comparision for spoken language evaluation, then, 
is to define an experimental condition in which the systems to 
be compared differ only in the speech recognition component. 
Not only is this strategy useful for comparing system level 
measurements of performance of speech recognizers, hut  it is 
also useful for more fine grained analyses of the interaction 
between the speech recognition component and the natural  
language system. 

Figure 3 shows the distribution of T's ,  F 's  and NA's for 
specific queries across the three systems. 

Note that for 52 queries, or 36~ of the total, the systems 
received the same score, although in no case did all three sys- 

tents receive an " F ' .  The largest difference among the three 
systems was in the number of cases where Unisys-BBN re- 
ceived a "T" but  the other two systems received an "NA' .  
This occurred for 31 queries. 

Another interesting comparison is to look at the cases where 
Unisys-MIT and Unisys-BBN issued a call based on the ffi~st 
candidate in the N-best, since this corresponds to the one-best 
interface used in Unisys-LL. In Unisys-MIT twenty-seven calls 
were issued based on the first candidate, out of a total of 45 
cans. Of the calls issued on the first candidate, 15 received a 
score of T and 12 received a score of F, for a weighted score 
of 2%. In  Unisys-BBN the first candidate was selected from 
the N-best 70% of the time. 26 of these candidates resulted 
in scores of "F" and 42 resulted in a "T" for a weighted score 
of 11%. 

Overall, the number of calls made was quite similar for the 
Unisys-LL and Unisys-MIT systems (25% of utterances for 
Unisys-LL and 30% for Unisys-MIT), but  it was much higher 
for Unisys-BBN (67%). In all three systems most of the in- 
puts were rejected by the syntax component (59% of all inputs 
for Unisys-LL, 74% of all inputs for Unisys-BBN and 85% of 
all inputs for Unisys-MIT). We can compare this to a base- 
line syntactic falluxe of 14% of inputs on the Unisys natural  
language test. (Note that since multiple inputs per utterance 
are possible with the N-best systems, the N-best vs. one-best 
systems are not strictly comparable.) 

S p e e c h  R e c o g n i t i o n  E v a l u a t l o n s  

Using speech recognition data from MIT, we submitted re- 
suits for the Class A, Class D1, Class AO and Class D10 
speech recognition tests, shown in tables 4, 5, 6, and 7. 

As expected, we observed a higher error rate for the op- 
tional tests, which contained verbal deletions, and we also 
observed a wide range of performance across speakers. The 
comparison of D1 pales and Class A speech recognition showed 
poorer word recognition in the D1 pairs than in the Class A 
test. An average 45.8% word error rate was observed for the 
Class A utterances compared to a 54.6% error rate for the D1 
utterances. As tables 4 and 6 show, this was fairly consis- 
tent across speakers, except for speaker CJ. There are at least 
two hypotheses which may explain this higher error in  context 
dependent spontaneous utterances. One hypothesis suggests 
that the higher error rate may be due in part  to the presence 
of prosodic phenomena common in dialog such as destress- 
ing of "old" information. Because the specific dialog context 
affects the pronunciation of words corresponding to old and 
new information, the training data used so far may not pro- 
vide a complete sample of how words are pronounced in a wide 
range of dialog contexts, consequently leading to poorer word 
recognition. Another hypothesis is based on the fact that the 
context-dependent sentences contain many references to flight 
numbers. Flight numbers may be difficult to recognize he- 
cause there is very little opportunity for syntactic or semantic 
information to constrain which number was uttered. 

C O N C L U S I O N S  

In this paper we presented benchmark test results on nat- 
ural language understanding, spoken language understanding 
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Speaker [ C o , ,  Sub [ Del I Ins I E~  S. Err I 
C E  56.0 33.3 1 0 . 6 ]  5.1 49.1 95.0 
CH 47.4 44.7 7.9 2 3 . 7  76.3 100.0 
CI 45.6 46,8 7,6 24,0 78.4 100.0 
CJ 75.8 18.3 5.9 3.1 27.3 84.6 
CK 5 6 . 9  29.4 13.7 2.0 45.1 91.7 
CL 75.0 22.5 2.5 9,7 34.7 84.6 
CM 31.1 62.1 6.8 15.9 84.8 100.0 
CO 74.1 19.1 6.8 8.6 34.6 100.0 
C P  ! 71.7 26.5 1.8 7.5 35.8 8 8 . 9  

I Average I 63.5 30.3 I 6.2 I 9.3 ] 45.8 91.2 I 

Tab le  4: S y s t e m  S u m m a r y  P e r c e n t a g e s  b y  S p e a k e r  
f o r  C l a s s  A 

]Speaker  I Corr I Sub ] D e l  I Ins ] Err ] S .  Err 

CE 59.5 40.5 0.0 16.2 56.8 100.0 
c I  21.9 71.9 6.2 21.9 lOO.O lOO.O 
CJ 72.6 17.7 9.7 1.6 29.0 100.0 
CM 42.7 ! 50.7 6.7 21.3 78.7 100.0 

[Average  I 51.5 [42:2  6.3 I 14.6 [ 63.1 I 100.0 

Tab le  5: S y s t e m  S u m m a r y  P e r c e n t a g e s  b y  S p e a k e r  
f o r  C l a s s  .4,0 

Speaker ] Corr Sub I De] I Ins Err S. Err [ 

CH 40.0 53.3 6.7 13.3 73.3 100.0 
CI 24.2 46.3 29.5 15.8 91.6 100.0 
CJ 83.9 10.7 5.4 3.6 19.6 50.0 
CK 48.0 39.9 12.2 2.7 54.7 100.0 
CL 66.7 31.7 1.7 8.3 41.7 83.3 
CO 54.7 27.3 18.0 3.1 48.4 94.4 
CP 80.0 20.0 0.0 8.0 28.0 100.0 

Average [ 52.0 34.1 I 13.9 [ 6.6 54.6 91.4 

Tab le  6: S y s t e m  S u m m a r y  P e r c e n t a g e s  b y  S p e a k e r  
f o r  C l a s s  D 1  

Speaker [ Cot ,  I Sub ] Del [ Ins Err S. Err 

CM { { [ [ 34.8 65.2 0.0 26.1 91.3 100.0 

Average [ 59.6 [ 40.4 [ 0.0 [ 15.8 56.1 100.0 

Tab le  7: S y s t e m  S u m m a r y  P e r c e n t a g e s  b y  S p e a k e r  
f o r  C l a s s  D 1 0  

and speech recognition. Our weighted score for the Class A 
natural  language test was 48.3%, for the D1 pairs, 63.2%, 
for the Class AO test, 9.1% and for the DO test, -50%. 
We presented five benchmark tests of spoken language sys- 
tems, Unisys-MIT on Class A, which received a weighted 
score of 9.7%, Unisys-MIT on Class AO, which received a 
weighted score of 18.2~, Unlsys-LL on Class A, which received 
a weighted score of 18.6%, Unisys-BBN on Class A, which re- 
ceived a weighted score of 39.6%, and Unlsys-BBN on Class 
AO, which received a weighted score of 18.2%. Fined]y, we 
presented speech recognition results using the Unisys natural  
language system as a filter on the N-best output of the MIT 
SUMMIT system. 

The semantics enhancements to the natural  language sys- 
tem are motivating us to revisit the tightly integrated archl- 
tecture of semantics/pragmatics  processing in our system, be- 
cause with these enhancements, semantic information regard- 
ing a discourse entity can become available to the processing 
at a much later point than previously. Thus, pragmatic  pro- 
cessing must be invoked at a later point to ensure that  ed] 
relevant semantic information has been exploited. 

The spoken language results are especially interesting, be- 
cause we are now beginning to be able to look at the inter- 
actions of the natural  language system with different speech 
recognisers,, and see how to tune the natural  language system 
to make the best use of the information available from the 
various speech recognlsers. We believe that  it is important  
to make these kinds of comparisons and we are planning to 
work with at least one other speech recognition system using 
the N-best interface. We also plan to begin exploring more 
tightly coupled systems using the stack decoder architecture 
([9]). 
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