
Instance-Based Generation for Interactive
Restricted Domain Question Answering Systems

Matthias Denecke and Hajime Tsukada

NTT Communication Science Laboratories,
2-4 Hikaridai, Seika-Cho, Soraku-gun, Kyoto
{denecke, tsukada}@cslab.kecl.ntt.co.jp

Abstract. One important component of interactive systems is the gen-
eration component. While template-based generation is appropriate in
many cases (for example, task oriented spoken dialogue systems), inter-
active question answering systems require a more sophisticated approach.
In this paper, we propose and compare two example-based methods for
generation of information seeking questions.

1 Introduction

Question answering is the task of providing natural language answers to natural
language questions using an information retrieval engine. Due to the unrestricted
nature of the problem, shallow and statistical methods are paramount.

Spoken dialogue systems address the problem of accessing information from a
structured database (such as time table information) or controlling appliances by
voice. Due to the fact that the scope of the application defined by the back-end,
the domain of the system is well-defined. Therefore, in the presence of vague,
ill-defined or misrecognized input from the user, dialogue management, relying
on the domain restrictions as given by the application, can interactively request
more information from the user until the users’ intent has been determined. In
this paper, we are interested in generation of information seeking questions in
interactive question-answering systems.

1.1 Our System

We implemented a system that combines features of question answering systems
with those of spoken dialogue systems. We integrated the following two features
in an interactive restricted domain question answering system: (1) As in question
answering systems, the system draws its knowledge from a database of unstruc-
tured text. (2) As in spoken dialogue systems, the system can interactively query
for more information in the case of vague or ill-defined user queries.

1.2 Problem Addressed in This Paper

Restricteddomain question answering systems canbe deployed in interactive prob-
lem solving solutions, for example, software trouble shooting. In these scenarios,
interactivity becomes a necessity. This is because it is highly unlikely that all facts
relevant to retrieving the appropriate response are stated in the query. For exam-
ple, in the software trouble shooting task described in [5], a frequent system gen-
erated information seeking question is for the version of the software. Therefore,

R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 486–497, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Instance-Based Generation 487

there is a need to inquire additional problem relevant information from the user,
depending on the interaction history and the problem to be solved.

In this paper, we specifically address the problem of how to generate in-
formation seeking questions in the case of ambiguous, vague or ill-defined user
questions. We assume that the decision of whether an information seeking ques-
tion is needed is made outside of the module described here. More formally, the
problem we address can be described as follows:

Given 1. A representation of the previous interaction history, consisting
of user and system utterances, and retrieval results from the IR
subsystem,

2. A decision for a information seeking question
Produce An information seeking question.

Problems of this kind have appeared traditionally in task oriented spoken
dialogue systems, where missing information needs to be prompted. However,
in the case of spoken dialogue systems, question generation is typically not a
substantial problem: the fact that the back-end is well-structured allows for
simple template-based generation in many cases. For example, missing values
for database queries or remote method invocations can be queried that way.
(But see also Oh and Rudnicky [7] or Walker et al [12] for more elaborated
approaches to generation for spoken dialogue systems).

In our case, however, a template-based approach is unrealistic. This is due
to the unstructured back-end application. Unlike as spoken dialogue systems,
we cannot make assumptions over what kind of questions to ask as this is de-
termined by the result set of articles as returned by the information retrieval
engine. Existing interactive question-answering systems (see section 7.1 for a
more detailed description) either use canned text on dialogue cards [5], break
down the dialogue representation into frames and then techniques from spo-
ken dialogue systems [8], or make simplifying assumptions to the extent that
generation essentially becomes equivalent to template-based generation.

1.3 Proposed Solution

For reasons discussed above, we propose an example-based approach to genera-
tion. More specifically, we use an existing dialogue corpus to retrieve appropriate
questions and modify in order to fit the situation at hand. We describe two algo-
rithms for instance-based natural language questions generation by first selecting
appropriate candidates from the corpus, then modifying the candidates to fit the
situation at hand, and finally re-rank the candidates. This is an example of a
memory-based learning approach, which in turn is a kind of a case-based reason-
ing. To the best of our knowledge, this is the first work addressing the problem
of example-based generation information seeking questions in the absence of a
structured back-end application.

2 Instance Based Natural Language Generation

In this section, we review the background in memory-based learning and its
application in natural language generation.

488 M. Denecke and H. Tsukada

2.1 Memory-Based Reasoning

Memory-based reasoning (MBR) is often considered a subtype of Case-based
reasoning. Case-based reasoning was proposed in the 80’s as an alternative to
rule-based approaches. Instead of expressing regularities about the domain to
be modeled in rules, the primary knowledge source in case-based reasoning is
a memory of cases representing episodes of encountered problems. Generating
a solution to a given problem consists of retrieving an appropriate case from
memory and adapting it to the problem at hand.

MBR solves problems by retrieving stored precedents as a starting point for
new problem-solving (e.g., [9]). However, its primary focus is on the retrieval pro-
cess, and in particular on the use of parallel retrieval schemes to enable retrieval
without conventional index selection. One aspect of memory-based systems is to
choose a distance that appropriately selects candidate exemplars.

Memory-based reasoning has been applied to machine translation, parsing,
unit selection text-to-speech synthesis, part-of-speech tagging, and others. An
overview of memory-based approaches to natural language processing can be
found in the introduction to the special issue [2].

2.2 Statistical and Instance-Based Generation

The most prominent example for statistical generation is Nitrogen [6]. This
system has been designed to allows large scale generation while requiring only
a minimal knowledge base. An abstract meaning representation is turned into
a lattice of surface sentences using a simple keyword based grammar. Using
statistical information acquired from a corpus, the sentences in the lattices are
re-ranked to determine the optimal surface string.

More recently, example-based natural language generation using a corpus
was proposed [11]. It is assumed in this work that content determination has
already taken place and the input has been broken down to sentence-size pieces.
The approach is to use a learned grammar to generate a list of candidates using
a traditional chart based generation algorithm. The grammar is learned using
statistical methods. During generation, edges that are added to the chart are
ranked depending on their distance to the closest instance in the example base.
This is where the memory-based approach comes into play. In order to allow for
careful generalization in the instance base, the authors propose to add a list of tag
(”slots”) with which the corpus is annotated. Based on this annotated corpus,
a semantic grammar is learned. For ranking the edge based on the instances,
the authors propose the well-known tf-idf scheme with the difference that those
words that are annotated with a semantic tag are replaced by their tag.

3 Kernels

Memory-based learning requires a distance metric in order to identify instances
similar to the problem at hand. We propose to use convolution kernels as distance
metric. A kernel K can be seen as a generalized form of a distance metric that
performs the following calculation

K(x, y) = 〈φ(x), φ(y)〉,

Instance-Based Generation 489

where φ is a non-linear mapping from the input space into some higher di-
mensional feature space, and 〈·, ·〉 is the inner product in the feature space.
Calculating the inner product in some space of higher dimension than the in-
put space is desirable for classifiers because non linearly separable sets can be
linearly separated in the higher dimensional feature space. Kernel methods are
computationally attractive because the kernel can calculate the mapping and
the inner product implicitly rather than explicitly determining the image under
φ of the input.

While Bag-of-Words techniques can be employed as an approximation to
derive feature vectors for classifiers, the loss of structure is not desirable. To
address this problem, Haussler [3] proposed Convolution Kernels that are capable
of processing structured objects x and y. The structured objects x and y consist
of components x1, . . . , xm and y1, . . . , yn. The convolution kernel of x and y is
given by the sum of the products of the components’ convolution kernels. This
approach can be applied to structured objects of various kinds, and results have
been reported for string kernels and tree kernels.

3.1 Hierarchical Tree Kernel

The idea behind Convolution Kernels is that the kernel of two structures is
defined as the sum of the kernels of their parts. Formally, let D be a positive
integer and X, X1, . . . , XD separable metric spaces. Furthermore, let x and y
be two structured objects, and x = x1, . . . , xD and y = y1, . . . , yD their parts.
The relation R ⊆ X1 × . . . × XD × X holds for x and x if x are the parts of
x. The inverse R−1 maps each structured object onto its parts, i.e. R−1(x) =
{x : R(x, x)}. Then the kernel of x and y is given by the following generalized
convolution:

K(x, y) =
∑

x∈R−1(x)

∑

y∈R−1(y)

D∏

1

Kd(xd, yd)

Informally, the value of a convolution kernel for two objects X and Y is given
by the sum of the kernel value for each of the substructures, i.e. their convolution.

Suzuki et al [10] proposed Hierarchical Directed Acyclic Graph kernels in
which the substructures contain nodes which can contain graphs themselves. The
hierarchy of graphs allows extended information from multiple components to be
represented and used in classification. In addition, nodes may be annotated with
attributes, such as part of speech tags, in order to add information. For example,
in a Question-Answering system, components such as Named Entity Extraction,
Question Classification, Chunking and so on may each add to the graph.

4 Corpus

We collected a corpus for our instance based generation system as follows. We
set up communications between a wizard and users. The wizard was instructed
to ”act like the system” we intend to build, that is, she was required to interact
with the user either by prompting for more information or give the user the
information she thought he wanted. Altogether, 20 users participated in the

490 M. Denecke and H. Tsukada

Fig. 1. Extract from the dialogue corpus

data collection effort. Each user contributed to 8 to 15 dialogues. The length
of the dialogues varies between 11 and 84 turns, the median being 34 turns.
Altogether, the corpus consists of 201 dialogues. The corpus consists of 6785
turns, 3299 of which are user turns and the remaining 3486 are wizard turns.
Due to the strict dialogue regiment prescribed in the onset of the data collection,
each dialogue consists either of an equal number of user and wizard turns (in
case the user ends the dialogue; 14 cases) or one wizard turn more than user
turn in case the wizard ends the dialogue (187 cases). Figure 1 shows the first
part of a dialogue from the corpus.

5 Generation Algorithm

5.1 Overview of the Algorithm

We now describe our algorithm informally. Given the dialogue history up until
now, the last user utterance and the result list as a response to the last user
utterance, it is the task of the algorithm to generate an appropriate question to
elicit more information from the user. Recall an external dialogue module (not
described in this paper) decides whether an information seeking question should
be generated (as opposed to, say, turning the information found in the highest
ranking article into an answer).

Informally, the algorithm works as follows. Initially, the dialogue corpus is
preprocessed, including word segmentation and part-of-speech labeling (see sec-
tion 5.2). In step 1, a ranked list of question candidates is generated (see section
5.3). In step 2, for each of the candidates, a list of change positions is deter-
mined (see section 5.4). These indicate the part of the questions that need to
be adapted to the current situation. Subsequently, the portions indicated by the
change positions are replaced by appropriate constituents. In the step 3, the
candidates generated in the previous step are re-ranked (see section 5.5). Re-
ranking takes place by using the same distance as the one in step 1. The highest
ranking candidate is then presented to the user.

Instance-Based Generation 491

5.2 Corpus Preprocessing

Since Japanese does not provide word segmentation, we need to preprocess the
corpus. The corpus consists of a set of dialogues. Each dialogue consists of a set
of utterances. Each utterance is annotated for speaker and utterance type. In a
dialogue, wizard and user utterance strictly alternate, with no interjections.

Preprocessing is done as follows. Each utterance is stripped of its annotations
and presented to the part-of-speech tagger Chasen [1]. Chasen segments the input
sentence, reduces inflected words to their base forms and assigns part of speech
tags to the base forms. We use the notation cw(u) to designate the content words
in utterance, sentence or newspaper article u. For our purposes, content words
are adjectives, nouns and verbs, de-inflected to their base form, if necessary. A
subsequent processing step assigns semantic labels and named entity classes to
the de-inflected word forms.

5.3 Sentence Selection

In order to understand the motivation for our approaches to sentence selection,
it is necessary to recall the context in which sentences are selected. We would like
to find a information seeking question similar to the one we want to generate.
The question to be generated is determined by the dialogue context. A natural
approach is to choose a bag-of-word distance measure for sentences, define a
distance for partial dialogues based on this distance and then choose the dialogue,
and a sentence from that dialogue with the lowest distance.

It turns out, however, that this approach does not work too well. One problem
is that in the beginning of a dialogue not many informative words are contained in
the utterances, therefore making an informed selection of utterances difficult. The
point of this paper is to determine how to overcome this problem. In the following
two sections, we propose two approaches. The first uses additional information in
the retrieved documents, and the second uses additional syntactic and semantic in-
formationwhen calculating the distance between sentences.Bothmethods consists
of calculating a score for candidate sentences and selecting the highest ranking one.

Method 1. Information retrieval over large corpora works well due to the redun-
dancy in the document data, a fact that for example Latent Semantic Indexing
exploits. The principal idea of the first method is to use the redundancy in the
unrestricted document corpus when scoring sentence candidates. Instead of de-
termining the bag-of-word score between a candidate sentence and the query
sentence, we submit the information extracted from the candidate dialogue and
the current dialogue to the information retrieval engine, resulting in two n best
lists of articles L and L′. In order to score the degree of similarity, we determine
the the intersection of content words in the retrieved articles. The larger the in-
tersection, the higher the score is to be ranked. In order to take relevance in the
result set into account, the scores are discounted by the position of the article
in the n best list. More specifically, we calculate the similarity score between
the current dialogue and an example dialogue as follows. Let d be the currently
developing dialogue consisting of t user utterances and u1, . . . ut be the user ut-
terances in the current dialogue up until now. Furthermore, let d′ be an example
dialogue from the corpus and let u′

1, . . . u
′
t′ be the first t′ user utterances in the

example dialogue. Then:

492 M. Denecke and H. Tsukada

1. Form the union of content words CW =
⋃

t cw(ut), CW ′ =
⋃

t′ cw(u′
t′)

2. Submit two queries to the information retrieval engine consisting of CW and
CW ′, respectively and obtain two article n best lists L and L′.

3. Calculate the similarity score according to

sim(ut, u
′
t′) =

∑

l∈L

∑

l′∈L′

cw(l) ∩ cw(l′)
rank(l) + rank(l′)

Method 2. In the first method described above, we seek to overcome poor
scoring function by adding redundancy from the information retrieval engine.
The second method we propose attempts to improve scoring by adding syntactic
and semantic structure to the distance metric. More specifically, we directly
compare the last user utterance in the current dialogue with the last utterance
in the example dialogue, but do so in a more detailed manner. To this end, we
determine the similarity score as the output of the hierarchical directed acyclic
graph kernel. The similarity is thus defined as sim(ut, u

′
t′) = K(ut, u

′
t′).

5.4 Sentence Adaptation

The adaptation of the highest ranking question to the current dialogue consists of
four steps. First, we determine the location(s) where change should take place.
Second, we determine constraints for the substituting constituent. Third, we
determine a list of substituents for each location of change. Fourth, we replace
the phrase(s) at the location(s) of change with the highest ranking element from
the corresponding list of substituents.

Determining Locations of Change. After the example sentences have been
retrieved from the corpus, we need to determine where and how the questions
need to be adapted to the current dialogue. We determine the locations of change
li by identifying suitable head words of phrase to be exchanged. What are the
criteria for suitable head words? Recall that the example sentences are drawn
from dialogue similar in topics but in which the content words are exchanged.
This limits the part-of-speech of the words to be exchanged to nouns and verbs.
Therefore, we construct a list l of nouns and verbs that are part of the retrieved
sentence but cannot be found in the current user query. Second, since we are
interested in replacing those content words that are specific to the retrieved
dialogue with those specific to the current dialogue, we would like to incorporate
some measure of informativeness. For that reason, we determine the unigram
count for all content words in l. High ranking candidates for change are those
words that are specific (i.e., have a low unigram count above a certain threshold).

Constraints for Substituents. The constraints for the substituents are given
by the semantic and syntactic information of the phrase at the change location.
More specifically, the constraints include the following features: Part of speech,
type of named entity, if applicable (the type includes location, state, person
name and so on), and semantic class.

Determining Substituents. After having determined the change locations
and constraints of the substituents, we proceed to determine the substituents.

Instance-Based Generation 493

The primary source for substituents are the retrieved newspaper articles. How-
ever, since we wish to apply the generation component in a dialogue system, we
need to take implicit confirmation into account as well. For this reason, we deter-
mine whether a phrase matching the phrase at change location li occurs before
li previously in the dialogue. If this is the case, the source for the substituent is
to be the current dialogue.

Given the constraints for a change location determined in the previous step,
we add all content words from the highest ranking article to the candidate list
for that change location. The score for a content word is given by the number of
constraints it fulfills. Ties are broken by unigram counts so that rare words get
a higher score due to their informativeness.

Application of Change. Applying the change simply consists of removing the
phrase whose head word is located at the change location and replacing it with
the highest ranking word from the candidate list for that score.

5.5 Reranking

The previous steps produce a list of sentence candidates. For each of the sentence
candidates, we calculate the similarity between the generated sentence with the
sentences from a small corpus of desirable sentences. Finally, the sentence with
the highest score is presented to the user. Examples of generated sentences are
shown in figure 2. The complete algorithm is given in figure 3.

Fig. 2. Generated questions. The substituent in the first question comes from the
dialogue context, while the other substituents come from retrieved articles.

6 Evaluation

The evaluation was done as follows. We divided the corpus in a example base and
a test set. The example base consists of 151 randomly selected dialogues, the test
set consists of the remaining 50 dialogues. From each of the test examples, we
supplied the initial wizard greeting and the initial user utterance as context for
the dialogue. Given this context, each method generated an n best list consisting
of 3 information seeking questions.

The generated lists were labeled by three annotators according to the follow-
ing criteria. For each of the three questions in the n best lists, the annotators
had to determine a syntactic, a semantic and an overall score. The scores range
over the labels poor, acceptable, good. The same score could be assigned more

494 M. Denecke and H. Tsukada

Input: Preprocessed dialogue corpus C = {d′
1, . . . , d

′
n}

Current dialogue d with user utterances u1, . . . , ut

Output: Information seeking question

Step 1: Determine sim(ut, u
′
t′) for all user utterances u′

t′ from the dialogue corpus
Select the w′

1, . . . w
′
k wizard utterances directly following the k

highest ranking utterances

Step 2: for each w′
i ∈ {w′

1, . . . , w
′
k}:

Determine change locations l1, . . . , ll
for each lj ∈ {l1, . . . , ll}

Determine list of substituents s1
ij , . . . , s

p
ij

Generate modified sentence list v1, . . . , vm by replacing substituents
at change locations

Step 3: Determine and return highest ranking vi∗ .

Fig. 3. Generation algorithm

than once, for example, in case the sentence selection algorithm produced an
unreliable candidate, the overall score for all three sentence candidates could
be bad. Furthermore, the evaluators had to re-arrange the 3 best list according
to the quality of the generated questions. Finally, the annotators had provide
a sentence they consider good. For easy comparison, the symbolic scores poor,
acceptable, good translate to 0,0.5 and 1, respectively, in the tables below.

6.1 Scoring Results

The results of the three best syntactic and semantic sentence scoring are shown
in table 1 (a) and 1 (b). The inter-annotator agreement is given by their kappa
scores for each method separately. Table 1 (c) shows the average of syntactic
and semantic scores. The kappa coefficient for the inter-annotator agreement for
these scores are 0.68, 0.72, and 0.71, respectively.

The syntactic scores rank higher than the semantic scores. This is explained
by the fact that the corpus contains syntactically relatively well-formed example
sentences, and the replacement operator, in addition to being constrained by

Table 1. Average of syntactic and semantic scores

Method 1 Method 2
1 0.796 0.800
2 0.657 0.790
3 0.787 0.780

(a)

Method 1 Method 2
1 0.573 0.393
2 0.393 0.426
3 0.416 0.376

(b)

Method 1 Method 2
1 0.685 0.596
2 0.525 0.608
3 0.602 0.578

(c)

Instance-Based Generation 495

part-of-speech as well as semantic information, does not have much opportunity
to create a syntactically malformed sentence. Furthermore, method 1 produces
sentences that are semantically more accurate than method 2.

6.2 Ranking Results

In order to determine the quality of the ranking, the annotators had to rerank the
generated questions. We determine the distance between two rankings according
to the Edit distance. Since the generated lists are only of length 3, there are only
three possibilties: the lists are equal (edit distance 0), one element in both lists is
the same (edit distance 2), and no element in the lists is the same, (edit distance
3). In order to allow easy comparison with the table above, we award scores of 1,
0.5 and 0 for edit distances of 0, 2 and 3, respectively (i.e., 1 is best, 0 is worst).
The annotators were asked to rank the questions according to syntactic criteria
alone, semantic criteria alone and all criteria. The results are shown in Table 2.

Table 2. Comparison of ranking: Syntactic, semantic and overall

Method 1 Method 2
1 0.493 0.893
2 0.813 0.860
3 0.767 0.227

(a)

Method 1 Method 2
1 0.720 0.873
2 0.760 0.780
3 0.567 0.353

(b)

Method 1 Method 2
1 0.766 0.853
2 0.740 0.726
3 0.573 0.213

(c)

It can be seen that method 2 ranks the example sentences in a way that is
more in line with the choices of the annotators than method 1.

6.3 Quality of Ranking

We hypothesize that the differences in the performance of the algorithms is due
to the different selection mechanisms. In order to validate this point, we asked
the three annotators to each provide one utterance they would rank highest for
each system question (called gold standard). Then, we formed a list of 6 sentences
u′

1, . . . u
′
6 (3 generated by the generation algorithm and 3 by the annotators) and

compared for each dialogue context the scores sim(ut, u
′
i) for those 6 sentences

where ut is the user utterance from the corresponding test case. We expect a
perfect ranking algorithm to value the gold standard as least as high as any
sentence from the corpus, and to value the gold standard higher every time the
annotators found the generated sentences faulty. It turns out that method 1
places the sentences of the gold standard in the top 3 in 42.3% of the cases while
method 2 does this in 59.3% of the cases.

7 Discussion

It can be seen that in general, method 1 produces higher quality sentences while
method 2 ranks the sentences better. We interpret this as follows. For sentence
selection, the redundancy as provided by the IR engine is helpful, whereas for
ranking of example sentences, the additional structure as expressed in the ker-
nel helps.

496 M. Denecke and H. Tsukada

7.1 Related Work

Kiyota and colleagues [5] describe an interactive restricted domain question an-
swering system where users can interactively retrieve causes for problems with
a computers’ operating system. Here, the problem of missing structure is solved
by providing so-called dialogue cards which provide the knowledge necessary for
dialogue processing. A dialogue card contains keywords, a question as asked by
the user in natural language (for example ”Windows does not boot”), an infor-
mation seeking question to be issued by the system (for example ”Which version
of Windows do you use”) and a list of options associated with actions. The ac-
tions are executed in function of the users’ answer to the question. Dialogue
processing takes place by retrieving relevant dialogue cards, where relevance is
determined by matching the users’ question and keywords with the question and
keywords noted on the dialogue card. Compared to our method, this method re-
quires substantially more structure to be represented in the dialogue cards and
is therefore more expensive to develop. Furthermore, the absence of any sort of
change operators to adapt the question from the dialogue card to the current sit-
uation does not provide as much flexibility as our method. On the other hand,
the highly structured dialogue cards give the developers more control (at the
price of a higher development cost) over the systems behavior than our method
and is therefore less risky in situations where failure is expensive.

In Small et al [8], retrieved documents are forced into frame structures. Mis-
matches or between the fillers of the frame structures or missing fillers trigger
information seeking questions to the user. While the generation as it is actually
used is not described in the paper, we believe that the frames provide sufficient
structure for template-based approaches.

Hori and coworkers [4] developed an interactive question answering system
based on a Japanese newspaper corpus. The purpose of information seeking ques-
tions is to prompt the user for missing or disambiguating information. From a
generation point of view, strong assumptions are made on the surface form of
the generated information seeking question. More specifically, ambiguous key-
words are combined with disambiguating options by means of the Japanese par-
ticle ’no’.

7.2 Summary

To summarize, the presented approaches attempt in different ways to compen-
sate for the lack of structure in an question answering system. Structure can
be provided explicitly as in the case of the dialogue cards, can be introduced
during processing as in the case of the frame-based document representations,
and can be assumed in the target expression as in the case of the generation
templates. In contrast to the described methods, our method does not require
an explicit representation of structure. Rather, the structure is given by what-
ever structure the kernel and the change operators construct during generation.
In other words, the structure our approach uses is (1) restricted to the question
to be generated and does not apply to the document level, and (2) in tradition
with the lazy learning characteristics of memory-based approaches is generated
on the fly on an as-needed basis, as opposed to being dictated from the outset
at design time.

Instance-Based Generation 497

Acknowledgements

We acknowledge the help of Takuya Suzuki with the implementation. Jun Suzuki
provided the implementation of the HDAG kernel. We would like to thank
Hideki Isozaki and our colleagues at NTT CS labs for discussion and
encouragement.

References

1. M. Asahara and Y. Matsumoto. 2000. Extended Models and Tools for High-
Performance Part-of-Speech Tagger. In Proceedings of The 18th International
Conference on Computational Linguistics, Coling 2000, Saarbrücken, Germany.

2. W. Daelemans. 1999. Introduction to the Special Issue on Memory-Based Language
Processing. Journal of Experimental and Theoretical Artificial Intelligence.

3. D. Haussler. 1999. Convolution kernels on discrete structures. Technical report,
UC Santa Cruz.

4. C. Hori, T. Hori, H. Tsukada, H. Isozaki, Y. Sasaki, and E. Maeda. 2003. Spoken
interactive odqa system: Spiqa. In Proc. of the 41th Annual Meeting of Association
for Computational Linguistics (ACL-2003), Sapporo, Japan.

5. K. Kiyota, S. Kurohashi, and F. Kido. 2002. ”Dialog Navigator”: A Question
Answering System based on Large Text Knowledge Base. In Proceedings of The
19th International Conference on Computational Linguistics, Coling 2002,Taipei,
Taiwan.

6. I. Langkilde and K. Knight. 1998. Generation that exploits Corpus-Based Statis-
tical Knowledge. In Proceedings of the Conference of the Association for Compu-
tational Linguistics (COLING/ACL).

7. A.H. Oh and A. Rudnicky. 2000. Stochastic Language Generation for Spoken
Dialogue Systems. In ANLP/NAACL 2000 Workshop on Conversational Systems,
pages 27–32.

8. S. Small and T. Strzalkowski. 2004. Hitiqa: Towards analytical question answering.
In Proceedings of The 20th International Conference on Computational Linguistics,
Coling 2004,Geneva Switzerland.

9. C. Stanfill and D. Waltz. 1986. Toward Memory-based Reasoning. Communications
of the ACM, vol. 29, pages 1213-1228.

10. J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda. 2003. Hierarchical directed acyclic
graph kernel: Methods for structured natural language data. In Proc. of the 41th
Annual Meeting of Association for Computational Linguistics (ACL-2003), Sap-
poro, Japan, pages 32–39.

11. S. Varges and C. Mellish. 2001. Instance-based natural language generation. In
Proceedings of the 2nd Meeting of the North American Chapter of the Association
for Computational Linguistics, pages 1–8.

12. M. Walker, O. Rambow, and M. Rogati. 2001. SPoT: A Trainable Sentence
Planner. In Proceedings of the North American Meeting of the Association for
Computational Linguistics.

	Introduction
	Our System
	Problem Addressed in This Paper
	Proposed Solution

	Instance Based Natural Language Generation
	Memory-Based Reasoning
	Statistical and Instance-Based Generation

	Kernels
	Hierarchical Tree Kernel

	Corpus
	Generation Algorithm
	Overview of the Algorithm
	Corpus Preprocessing
	Sentence Selection
	Sentence Adaptation
	Reranking

	Evaluation
	Scoring Results
	Ranking Results
	Quality of Ranking

	Discussion
	Related Work
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

