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Abstract

In this paper we provide benchmark results
for two classes of methods used in inter-
preting noun compounds (NCs): semantic
similarity-based methods and their hybrids.
We evaluate the methods using 7-way and
binary class data from the nominal pair in-
terpretation task of SEMEVAL-2007.1 We
summarize and analyse our results, with
the intention of providing a framework for
benchmarking future research in this area.

1 Introduction

This paper reviews a range of simple and hybrid
approaches to noun compound (NC) interpretation.
The interpretation of NCs such as computer science
and paper submission involves predicting the se-
mantic relation (SR) that underlies a given NC. For
example, student price conventionally expresses the
meaning that a student benefits from the price (SR
= BENEFICIARY), while student protest conven-
tionally means a student undertaking a protest (SR
= AGENT).2

NCs are formed from simplex nouns with high
productivity. The huge number of possible NCs and
potentially large number of SRs makes NC interpre-
tation a very difficult problem. In the past, much NC
interpretation work has been carried out which tar-
gets particular NLP applications such as information
extraction, question-answering and machine trans-
lation. Unfortunately, much of it has not gained

1The 4th International Workshop on Semantic Evaluation
2SRs used in the examples are taken from Barker and Sz-

pakowicz (1998).

traction in real-world applications as the accuracy
of the methods has not been sufficiently high over
open-domain data. Most prior work has been car-
ried out under specific assumptions and with one-
off datasets, which makes it hard to analyze perfor-
mance and to build hybrid methods. Additionally,
disagreement in the inventory of SRs and a lack of
resource sharing has hampered comparative evalua-
tion of different methods.

The first step in NC interpretation is to define a set
of SRs. Levi (1979), for example, proposed a system
of 9 SRs, while others have proposed classifications
with 20-30 SRs (Finin, 1980; Barker and Szpakow-
icz, 1998; Moldovan et al., 2004). Smaller sets tend
to have reduced coverage due to coarse granularity,
whereas larger sets tend to be too fine grained and
suffer from low inter-annotator agreement. Addi-
tionally pragmatic/contextual differentiation leads to
difficulties in defining and interpreting SRs (Down-
ing, 1977; SparckJones, 1983).

Recent attempts in the area of NC interpretation
have taken two basic approaches: analogy-base in-
terpretation (Rosario, 2001; Moldovan et al., 2004;
Kim and Baldwin, 2005; Girju, 2007) and seman-
tic disambiguation relative to an underlying predi-
cate or semantically-unambiguous paraphrase (Van-
derwende, 1994; Lapata, 2002; Kim and Baldwin,
2006; Nakov, 2006). Most methods employ rich on-
tologies and ignore the context of use, supporting
the claim by Fan (2003) that axioms and ontological
distinctions are more important than detailed knowl-
edge of specific nouns for NC interpretation. Addi-
tionally, most approaches use supervised learning,
raising questions about the generality of the test and
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training data sets and the effectiveness of the algo-
rithms in different domains (coverage of SRs over
the NCs is another issue).

Our aim in this paper is to compare and analyze
existing NC interpretation methods over a common,
publicly available dataset. While recent research
has made significant progress, bringing us one step
closer to practical applicability in NLP applications,
no direct comparison or analysis of the approaches
has been attempted to date. As a result, it is hard to
determine which approach is appropriate in a given
domain or build hybrid methods based on prior ap-
proaches. We also investigate the impact on perfor-
mance of relaxing assumptions made in the origi-
nal research, to compare different approaches in an
identical setting.

In the remainder of the paper, we review the re-
search background and NC interpretation methods
in Section 2, describe the methods and system archi-
tectures in Section 3, detail the datasets used in our
experiments in Section 4, carry out a system evalu-
ation in Section 5 and Section 6, and finally present
a discussion and conclusions in Section 7 and Sec-
tion 8, respectively.

2 Background and Methods

2.1 Research Background

In this study, we selected three semantic similar-
ity based models which had been found to perform
strongly in previous research, and which were easy
to re-implement: SENSE COLLOCATION (Moldovan
et al., 2004), CONSTITUENT SIMILARITY (Kim
and Baldwin, 2005) and CO-TRAINING, e.g. using
SENSE COLLOCATION or CONSTITUENT SIMILAR-
ITY (Kim and Baldwin, 2007). These approaches
were evaluated over a 7-way classification using
open-domain data from the nominal pair interpre-
tation task of SEMEVAL-2007 (Girju et al., 2007).
We test their performance in both 7-way and binary-
class classification settings.

2.2 Sense Collocation Method

The SENSE COLLOCATION method of Moldovan et
al. (2004) is based on the pair of word senses of NC
constituents. The basic idea is that NCs which have
the same or similar sense collocation tend to have
the same SR. As an example, car factory and auto-

mobile factory share the conventional interpretation
of MAKE, which is predicted by car and automo-
bile having the same sense across the two NCs, and
factory being used with the same sense in each in-
stance. This intuition is formulated in Equations 1
and 2 below.

The probability P (r|fifj) (simplified to
P (r|fij)) of a SR r for word senses fi and fj

is calculated based on simple maximum likelihood
estimation:

P (r|fij) =
n(r, fij)
n(fij)

(1)

The preferred SR r∗ for the given sense combina-
tion is that which maximises the probability:

r∗ = argmaxr∈RP (r|fij)
= argmaxr∈RP (fij |r)P (r) (2)

2.3 Constituent Similarity Method
The intuition behind the CONSTITUENT SIMILAR-
ITY method is similar to the SENSE COLLOCATION

method, in that NCs made up of similar words tend
to share the same SR. The principal difference is that
it doesn’t presuppose that we know the word sense
of each constituent word (i.e. the similarity is cal-
culated at the word rather than sense level). The
method takes the form of a 1-nearest neighbour clas-
sifier, with the best-matching training instance for
each test instance predicting its SR. For example,
we may find that test instance chocolate milk most
closely matches apple juice and hence predict that
the SR is MATERIAL.

This idea is formulated in Equation 3 below. For-
mally, SA is the similarity between NCs (Ni,1, Ni,2)
and (Bj,1, Bj,2):

SA((Ni,1, Ni,2), (Bj,1, Bj,2)) =
((αS1 + S1)× ((1− α)S2 + S2))

2
(3)

where S1 is the modifier similarity (i.e.
S(Ni,1, Bj1)) and S2 is the head noun similarity
(i.e. S(Ni,2, Bj2)); α ∈ [0, 1] is a weighting factor.
The similarity scores are calculated across the bag
of WordNet senses (without choosing between

570



them) using the method of Wu and Palmer (1994) as
implemented in WordNet::Similarity (Pat-
wardhan et al., 2003). This is done for each pairing
of WordNet senses of the two words in question,
and the overall lexical similarity is calculated as the
average across the pairwise sense similarities.

2.4 Co-Training by Sense Collocation

Co-training by sense collocation (SCOLL CO-
TRAINING) is based on the SENSE COLLOCATION

method and lexical substitution (Kim and Baldwin,
2007). It expands the set of training NCs from
a relatively small number of manually-tagged seed
instances. That is, it makes use of extra train-
ing instances fashioned through a bootstrap process.
For example, assuming automobile factory with the
SR MAKE were a seed instance, NCs generated
from synonyms, hypernyms and sister words of its
constituents would be added as extra training in-
stances, with the same SR of MAKE. That is, we
would add car factory (SYNONYM), vehicle fac-
tory (HYPERNYM) and truck factory (SISTER
WORD), for example. Note that the substitution
takes place only for one constituent at a time to avoid
extreme variation.

2.5 Co-training by Constituent Similarity

Co-training by Constituent Similarity (CS CO-
TRAINING) is also a co-training method, but based
on CONSTITUENT SIMILARITY rather than SENSE

COLLOCATION. The basic idea is that when NCs
are interpreted using the CONSTITUENT SIMILAR-
ITY method, the predictions are more reliable when
the lexical similarity is higher. Hence, we progres-
sively reduce the similarity threshold, and incorpo-
rate higher-similarity instances into our training data
earlier in the bootstrap process. That is, we run
the CONSTITUENT SIMILARITY method and acquire
NCs with similarity equal to or greater than a fixed
threshold. Then in the next iteration, we add the ac-
quired NCs into the training dataset for use in clas-
sifying more instances. As a result, in each step,
the number of training instances increases monoton-
ically. We “cascade” through a series of decreas-
ing similarity thresholds until we reach a saturation
point. As our threshold, we used a starting value of
0.90, which was decremented down to 0.65 in steps
of 0.05.

Method Description
SCOLL sense collocation

SCOLLCT sense collocation + SCOLL co-training
CSIM constituent similarity

CSIM +SCOLLCT constituent similarity + SCOLL co-training
HYBRID SCOLL + CSIM + SCOLLCT

CSIMCT constituent similarity + CSIM co-training

Table 1: Systems used in our experiments
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Figure 1: Architecture of the HYBRID method

3 Systems and Architectures

We tested the original methods of Moldovan et al.
(2004) and Kim and Baldwin (2005), and combined
them with the co-training methods of Kim and Bald-
win (2007) to come up with six different hybrid sys-
tems for evaluation, as detailed in Table 1. To build
the classifiers, we used the TIMBL5.0 memory-
based learner (Daelemans et al., 2004).

The HYBRID method consists of five interpreta-
tion steps. The first step is to use the SENSE COL-
LOCATION method over the original training data.
When the sense collocation of the test and train-
ing instances is the same, we judge the predicted
SR to be correct. The second step is to apply the
CONSTITUENT SIMILARITY method over the origi-
nal training data. In order to confirm that the pre-
dicted SR is correct, we use a threshold of 0.8 to
interpret the test instances. The third step is to ap-
ply SENSE COLLOCATION over the expanded train-
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Figure 2: Architecture of the CSIMCT system

ing data through the advent of hypernyms and sis-
ter words, using the SCOLL CO-TRAINING method.
This step benefits from a larger amount of training
data (17,613 vs. 937). The fourth step is to apply
the CONSTITUENT SIMILARITY method (EXTCS)
over the consolidated training data, with the thresh-
old unchanged at 0.8. The final step is to apply the
CONSTITUENT SIMILARITY (CSTT) method over
the combined training data without any restriction
on the threshold (to guarantee a SR prediction for
every test instance). We select SRs from the training
instances whose similarity is higher than the origi-
nal training data and expanded training data. How-
ever, since the generated training instances are more
likely to contain errors, we apply a linear weight of
0.8 to the similarity values for the expanded train-
ing instances. This gives preferential treatment to
predictions based on the original training instances.
Note that this weight was based on analysis of the
error rate in the expanded training instances. In pre-
vious work (Kim and Baldwin, 2007), we found the
overall classification accuracy rate after the first it-
eration to be 70-80%. Hence, we settled on a weight
of 0.8.

The CSIMCT system is based solely on the CON-
STITUENT SIMILARITY method with cascading. We
perform iterative CS co-training as described in Sec-
tion 2.5, with the slight variation that we hold off

Binary 7-way
SR Test Train Train* Test Train Train*
CE 80 136 2,588 36 71 1,854
IA 78 135 1,400 36 68 1,001
PP 93 126 2,591 55 78 2,089
OE 81 136 3,085 35 52 1,560
TT 71 129 2,994 27 50 1,718
PW 72 138 2,577 28 64 1,510
CC 74 137 2,378 37 63 1,934

Total 549 937 17,613 254 446 11,664

Table 3: Number of instances associated with each
SR (Train* is the number of expanded train in-
stances)

on reducing the threshold if less than 10% of the
test instances are tagged on a given iteration, giving
other test instances a chance to be tagged at a higher
threshold level relative to newly generated training
instances. The residue of test instances on comple-
tion of the final iteration (threshold = 0.6) are tagged
according to the best-matching training instance, ir-
respective of the magnitude of the similarity.

4 Data

We used the dataset from the SEMEVAL-2007
nominal pair interpretation task, which is based
on 7 SRs: CAUSE-EFFECT (CE), INSTRUMENT-
AGENCY (IA), PRODUCT-PRODUCER (PP),
ORIGIN-ENTITY (OE), THEME-TOOL (TT),
PART-WHOLE (PW), CONTENT-CONTAINER

(CC). The task in SEMEVAL-2007 was to identify
the compatibility of a given SR for each test
instances using word senses retrieved from WORD-
NET 3.0 (Fellbaum, 1998) and queries. Table 2
shows the definition of the SRs.

In our research, we interpret the dataset in two
ways: (1) as a binary classification task for each SR
based on the original data; and (2) as a 7-way clas-
sification task, combining together all positive test
and training instances for each of the 7 SR datasets
into a single dataset. Hence, the size of the dataset
for 7-way classification is much smaller than that of
the original dataset. We also expand the training in-
stances using SCOLL CO-TRAINING. Table 3 de-
scribes the number of test and train instances for NC
interpretation for the binary and 7-way classification
tasks.

Our analysis shows that only 5 NCs are repeated
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Semantic relation Definition Examples
Cause-Effect (CE) N1 is the cause of N2 virus flu, hormone growth
Instrument-Agency (IA) N1 is the instrument of N2; N2 uses N1 laser printer, axe murderer
Product-Producer (PP) N1 is a product of N2; N2 produces N1 honey bee, music clock
Origin-Entity (OE) N1 is the origin of N2 bacon grease, desert storm
Theme-Tool (TT) N2 is intended for N1 reorganization process, copyright law
Part-Whole (PW) N1 is part of N2 table leg, daisy flower
Content-Container (CC) N1 is stored or carried inside N2 apple basket, wine bottle

Table 2: The set of 7 semantic relations, where N1 is the modifier and N2 is the head noun

across multiple SR datasets (i.e. occur as an instance
in more than one of the 7 datasets), none of which
occur as positive instances for multiple SRs. As
such, no NC instances in the 7-way classification
task end up with a multiclass classification. Also
note that some of NCs are contained within ternary
or higher-order NCs: 40 test NCs and 81 training
NCs for the binary classification task, and 24 test
NCs and 42 training NCs for the 7-way classification
task. For these NCs, we extracted a “base” binary
NC based on the provided bracketing. The follow-
ing are examples of extraction of binary NCs from
ternary or higher-order NCs.

((billiard table) room) → table room
(body (bath towel)) → body towel

In order to extract a binary NC, we take the head
noun of each embedded NC and combine this with
the corresponding head noun or modifier. E.g., table
is the head noun of billiard table, which combines
with the head noun of the complex NC room to form
table room.

5 Experiment 1: 7-way classification

Our first experiment was carried out over the 7-way
classification task—i.e. all 7 SRs in a single classifi-
cation task—using the 6 systems from Section 3. In
our results in Table 4, we use the system categories
from SEMEVAL-2007 of A4 and B4, where A4 sys-
tems use none of the provided word senses, and B4
systems use the word senses.3 We categorized our
systems into these two groups in order to evaluate
them separately within the bounds of the original
SEMEVAL-2007 task. In each case, the baseline is
a majority class classifier.

3In the original SEMEVAL-2007 task, there were two fur-
ther categories, which incorporated the “query” with or without
the sense information.

Class Method P R F1 A
– Majority .217

A4 CSIM .518 .522 .449 .528
CSIMCT .517 .511 .426 .522

B4 SCOLL .705 .444 .477 .496
SCOLLCT .646 .466 .498 .508

CSIM +SCOLLCT .523 .520 .454 .528
HYBRID .500 .505 .416 .516

Table 4: Experiment 1: Results (P=precision,
R=recall, F1=F-score, A=accuracy)

Step Method Tagged Ai Untagged
1 SCOLL 12 1.000 242
2 CSIM 57 .719 185
3 extSCOLL 0 .000 185
4 extCSIM 78 .462 107
5 CSIMREST 107 .393 0

Table 5: Experiment 1: Classifications for each
step of the HYBRID method (CSREST=the final ap-
plication of CS over the remaining test instances,
Ai=accuracy for classifications made at step i)

Tables 5 and 6 show the results at each step for
the HYBRID and CSIMCT methods, respectively. As
each method proceeds, the amount of tagged data in-
creases but the classification accuracy of the system
decreases, due to the inclusion of increasingly noisy
training instances in the previous step. The perfor-
mance of each individual relation is shown in Fig-
ure 3, which largely mirrors the findings of the sys-
tems in the original SEMEVAL-2007 task in terms
of the relative difficulty to predict each of the 7 SRs.

6 Experiment 2: binary classification

In the second experiment, we performed a separate
binary classification task for each of the 7 SRs, in
the manner of the original SEMEVAL-2007 task.
Table 7 shows the three baselines provided by the
SEMEVAL-2007 organisers and performance of our

573



Iteration θ Tagged Ai Untagged
1 .90 29 .897 225
2 .85 12 .750 213
3 .80 31 .613 182
4 .75 43 .535 139
5 .70 63 .540 76
6 .65 26 .346 50
7 <.65 49 .250 1

Table 6: Experiment 1: Classifications at each step
of the CSIMCT method (θ=threshold, Ai=accuracy
for classifications made at iteration i)

CE IA OEPP TT PW CC
Relations

Accuracy(%)

KE w/ multiple classes

 0
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recall
Fscore

Figure 3: Experiment 1: Performance over each SR
(CSIM +SCOLLCT method)

6 systems. We also present the best-performing sys-
tem within each group from the SEMEVAL-2007
task. The methods for computing the baselines are
described in Girju et al. (2007).

As with the first experiment, we analyzed the
number of tagged instances and accuracy for the HY-
BRID and CSIMCT methods, as shown in Tables 8
and 9, respectively. The overall results are similar to
those for the 7-way classification task.

Figures 4 and 5 show the performance for posi-
tive and negative classifications for each individual
SR. The performance when the classifier outputs are
mapped onto the 7-way classification task are simi-
lar to those in Figure 3.

7 Discussion and Conclusion

We compared the performance of the 6 systems in
Tables 4 and 7 over the 7-way and binary clas-
sification tasks, respectively. The performance of
all methods exceeded the baseline. The CON-
STITUENT SIMILARITY (CSIM) system performed
the best in group A4 and CONSTITUENT SIMILAR-

Class Method P R F1 A
– All True .485 1.000 .648 .485
– Probability .485 .485 .485 .517
– Majority .813 .429 .308 .570

A4 Best .661 .667 .648 .660
CSIM .632 .628 .627 .650

CSIMCT .615 .557 .578 .627
B4 Best .797 .698 .724 .763

SCOLL .672 .584 .545 .634
SCOLLCT .602 .571 .554 .619

CSIM +SCOLLCT .660 .657 .654 .669
HYBRID .617 .568 .587 .625

Table 7: Experiment 2: Binary classification results
(P=precision, R=recall, F1=F-score, A=accuracy)

Step Method Tagged Ai Untagged
1 SCOLL 21 .810 526
2 CSIM 106 .689 420
3 extSCOLL 0 .000 420
4 extCSIM 61 .607 359
5 CSIMREST 359 .619 0

Table 8: Experiment 2: Classifications for each
step of the HYBRID method (CSREST=the final ap-
plication of CS over the remaining test instances,
Ai=accuracy for classifications made at step i)

ITY + SCOLLCT (CSIM +SCOLLCT ) system per-
formed the best in group B4 for both classification
tasks. In general, the performance of CONSTITUENT

SIMILARITY is marginally better than that of SENSE

COLLOCATION. Also, the utility of co-training is
confirmed by it outperforming both CONSTITUENT

SIMILARITY and SENSE COLLOCATION.
In order to compare the original methods with

the hybrid methods, we observed that the original
methods, SCOLL and K, and their co-training vari-
ants performed consistently better than the hybrid
methods, HYBRID and CSIMCT . We found that the
combination of the methods lowers overall perfor-
mance. We also found that the number of training
instances contributes to improved performance, pre-
dictably in the sense that the methods are supervised,
but encouraging in the sense that the extra training
data is generated automatically. As expected, the
step-wise performance of HYBRID and CSIMCT de-
grades with each iteration, although there were in-
stances where the performance didn’t drop from one
iteration to the next (e.g. iteration 3 = 59.46% vs. it-
eration 4 = 72.23% in Experiment 2). This confirms
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Iteration θ Tagged Ai Untagged
1 .90 21 .810 526
2 .85 52 .726 474
3 .80 56 .714 418
4 .75 74 .595 344
5 .70 101 .722 243
6 .65 222 .572 21
7 <.65 21 .996 0

Table 9: Experiment 2: Classifications at each step
of the CSIMCT method (θ=threshold, Ai=accuracy
for classifications made at iteration i)

CE IA PP OE TT PW CC

relations

Accuracy(%)

KE w/ binary classes & tagged as "true"

Fscore
recall

precision
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Figure 4: TPR for each SR for the binary task (pos-
itive instances, CSIM +SCOLLCT method)

our expectation that: (a) the similarity threshold is
strongly correlated with the quality of the resultant
data; and (b) the method is susceptible to noisy train-
ing data.

Our performance comparison over the binary
classification task from the SEMEVAL-2007 task
shows that our 6 systems performed below the best
performing system in the competition, to varying de-
grees. This is partly because the methods were origi-
nally designed for multi-way (positive) classification
and require adjustment for the binary task reformu-
lation, although their performance is competitive.

Finally, comparing the SCOLL and CSIM meth-
ods, we found that the methods interpret SRs with
100% accuracy when the sense collocations are
found in both the test and training data. However,
the CSIM method is more sensitive than the SCOLL

method to variation in the sense collocations, which
leads to better performance. Also, the CSIM method
interprets NCs with high accuracy when the com-
puted similarity is sufficiently high (e.g. with simi-
larity ≥ 0.9 the accuracy is 89.7%). Another benefit

CE IA PP OE TT PW CC
Relations

Accuracy(%)

KE w/ binary classes & tagged as "false"
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Figure 5: TNR for each SR for the binary task (neg-
ative instances, CSIM +SCOLLCT method)

of this method is that it interprets NCs without word
sense information. As a result, we conclude that the
CSIM method is more flexible and robust. One pos-
sible weakness of CSIM is its reliance on the simi-
larity measure.

8 Conclusions and Future Work

In this paper, we have benchmarked and hybridised
existing NC interpretation methods over data from
the SEMEVAL-2007 nominal pair interpretation
task. In this, we have established guidelines for the
use of the different methods, and also for the rein-
terpretation of the SEMEVAL-2007 data as a more
conventional multi-way classification task. We con-
firmed that CONSTITUENT SIMILARITY is the best
method due to its insensitivity to varied sense col-
locations. We also confirmed that co-training im-
proves the performance of the methods by expand-
ing the number of training instances.

Looking to the future, there is room for improve-
ment for all the methods through such factors as
threshold tweaking and expanding the training in-
stances further.
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