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Abstract 

 

Structured information plays a critical role in 
many NLP tasks, such as semantic relation ex-
traction between named entities and semantic 
role labeling. This paper proposes a principled 
way to automatically generate constituent 
structure representation for tree kernel-based 
protein-protein interaction (PPI) extraction. 
The main idea behind our approach is that the 
critical portion in a constituent parse tree for 
PPI extraction can be automatically deter-
mined by the shortest dependency path be-
tween the two involved proteins, while other 
portion can be regarded as noise and ignored 
safely. Evaluation on multiple PPI corpora 
shows that our dependency-directed tree ker-
nel-based method achieves promising results. 
This justifies the effectiveness of tree kernel-
based methods for PPI extraction, in particular 
the advantage of dependency-directed con-
stituent structure representation. 

1 Introduction 

Since determining protein interaction partners is 
crucial to understand both the functional role of 
individual proteins and the organization of the 
entire biological process, there is a significant 
interest in protein-protein interaction (PPI) ex-
traction. However, manual collection of relevant 
PPI information from thousands of biomedical 
research papers published every day (e.g. MED-
LINE) is so time-consuming and labor-
demanding that automatic extraction approaches 
with the help of NLP techniques become neces-
sary. 

 In principle, PPI extraction is much like the 
semantic relation extraction subtask (so called 
Relation Detection and Classification, RDC) 
defined by the ACE project (ACE, 2002-2007) in 
the newswire domain. Therefore, various kinds 

of machine learning methods have been 
borrowed from the newswire domain to the 
biomedical domain: feature-based methods 
(Mitsumori et al., 2006; Giuliano et al., 2006; 
Sætre et al., 2007; Liu et al., 2010) and kernel-
based methods (Bunescu et al., 2005a; Erkan et 
al., 2007; Airola et al., 2008; Kim et al., 2010). 

Early studies on PPI extraction employ 
feature-based methods. However, the feature-
based methods often fail to effectively capture 
the structured information, which is essential to 
identify the relationship between two proteins in 
a constituent or dependency-based syntactic 
representation. 

With the wide adoption of kernel-based 
methods to many NLP tasks, particularly for 
semantic relation extraction and semantic role 
labeling, various kernels such as subsequence 
kernels (Bunescu et al., 2005a) and tree kernels 
(Li et al., 2008) have been applied to PPI 
extraction. On one hand, dependency-based 
kernels, such as edit distance kernels (Erkan et al. 
2007), graph kernels (Airola et al., 2008) and 
subsequence kernels (Kim et al., 2010), show 
some promising results for PPI extraction. This 
suggests that dependency information plays a 
critical role in PPI extraction, much like semantic 
relation extraction in the newswire narratives 
(Culotta and Sorensen, 2004; Bunescu et al., 
2005b). On the other hand, while tree kernels 
based on constituent parse trees achieve great 
success in semantic relation extraction (Zhang et 
al., 2006; Zhou et al., 2007a; Qian et al., 2008) 
and semantic role labeling (Moschitti, 2004; 
Zhang et al., 2008) from the newswire narratives, 
they haven’t been fully explored for PPI 
extraction in the biomedical domain. Considering 
the similarity between the task of PPI extraction 
from the biomedical domain and that of relation 
extraction from the newswire domain, one 
question naturally arises: “How can kernel-based 
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PPI extraction benefit from the constituent parse 
tree structure?” 

To address this question, this paper presents a 
principled way to automatically generate a pre-
cise and concise constituent parse tree represen-
tation for kernel-based methods, motivated by 
the success of employing dependency informa-
tion in PPI extraction. This is done by taking ad-
vantage of the shortest dependency path between 
two involved proteins in the dependency parse 
tree structure of a sentence. Specifically, only the 
words appearing on the shortest dependency path 
and their associated constituents in the constitu-
ent parse tree are considered as necessary and 
thus kept as the essential part of the constituent 
parse tree. In this paper, we refer to it as SDP-
CPT (Shortest Dependency Path-directed Con-
stituent Parse Tree). Experimental results on sev-
eral major PPI corpora show the effectiveness of 
dependency-directed constituent structure repre-
sentation and its preference over other state-of-
the-art structure representations. 

The rest of this paper is organized as follows. 
First, related work in PPI extraction is over-
viewed in Section 2. Then, Section 3 elaborates 
our shortest dependency path-directed constitu-
ent parse tree structure. Section 4 reports the ex-
perimental results on major PPI corpora. Finally 
we conclude our work in Section 5. 

2 Related Work 

Due to space limitation, this section only gives 
an overview on kernel-based methods on PPI 
extraction in the biomedical domain as well as 
semantic relation extraction in the newswire do-
main. For details about feature-based methods, 
please refer to related studies in the biomedical 
domain  (Mitsumori et al., 2006; Giuliano et al., 
2006; Liu et al., 2010) and those in the newswire 
domain (Zhao et al., 2005; Zhou et al. 2005, 
2007b), respectively. 

PPI extraction in biomedical domain 

Representative kernel-based methods on PPI ex-
traction take advantage of lexical or dependency 
information. 

Bunescu et al. (2005a) adopt a generalized 
substring kernel over a mixture of words and 
word classes to extract protein interactions from 
biomedical corpora and semantic relations from 
newswire corpora. Particularly, they achieve the 
F1-score of 54.2 in extracting protein interac-
tions from the AIMed corpus. Erkan et al. (2007) 
first define two similarity functions based on co-

sine similarity and edit distance among depend-
ency paths between two entities, and then incor-
porate them in semi-supervised learning for PPI 
extraction using SVM and KNN classifiers. 
Sætre et al. (2007) use a tree kernel over depend-
ency structures from two parsers and achieve the 
F1-score of 52.0 for PPI extraction from the 
AIMed corpus. Airola et al. (2008) introduce an 
all-dependency-paths graph kernel to capture 
complex dependency relationships between 
words and attain a significant performance boost 
at the expense of computational complexity. 
They achieve the F1-score of 56.4 in PPI extrac-
tion from the AIMed corpus. Kim et al. (2010) 
adopt a walk-weighted subsequence kernel based 
on shortest dependency paths to explore various 
substructures such as e-walks, partial match, and 
non-contiguous paths. They achieve the F1-score 
of 56.7 on the AIMed corpus. 

Semantic relation extraction in newswire do-
main 

In the literature, various kernels-based methods 
(Zelenko et al., 2003; Culotta and Sorensen, 
2004; Bunescu et al., 2005b; Zhang et al., 2006; 
Zhou et al., 2007a; Qian et al., 2008) have been 
widely used in semantic relation extraction in the 
newswire domain. In particular, Zhang et al. 
(2006), Zhou et al. (2007a) and Qian et al. (2008) 
adopt convolution tree kernels (Collins and 
Duffy, 2001) over constituent parse trees and 
show great success with comparable or even bet-
ter performance than feature-based ones, moti-
vated by the pioneer work of Moschitti et al. 
(2004; 2008) on semantic role labeling. 

While convolution kernels (Haussler et al., 
1999) can effectively capture structured informa-
tion in discrete objects, the key problem for tree 
kernel-based methods lies largely in how to ap-
propriately represent structured syntactic infor-
mation inherent in relation instances. Zhang et al. 
(2006) discover that the Shortest Path-enclosed 
Tree (SPT) achieves the best performance among 
five tree setups. Zhou et al. (2007a) further ex-
tend it to Context-Sensitive Shortest Path-
enclosed Tree (CS-SPT), which includes neces-
sary predicate-linked path information. Qian et al. 
(2008) propose to automatically determine the 
appropriate part of a constituent parse tree by 
considering constituent dependencies on each 
node along the shortest path between two entity 
mentions and discarding irrelevant nodes. How-
ever, their adopted constituent dependency rules 
are manually constructed and thus difficult to 
adapt to other domains and languages. 
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Figure 1. Different tree setups for a PPI instance between PROT1 and PROT2 from sentence “Association be-

tween PROT1 and cyclin B1 / PROT2 was detected in the HeLa cells.” in the AIMed corpus 

In this paper, we make use of the shortest de-
pendency path in the dependency tree to refine 
the constituent parse tree. Specifically, all the 
words which appear on the shortest dependency 
path, together with their associated constituents, 
are kept in the constituent parse tree, while other 
constituents are removed, forming a Shortest 
Dependency Path-directed Constituent Parse 
Tree (SDP-CPT). 

3 Constituent Structure Representation  

This section first illustrates the limitations of 
commonly-used constituent parse tree setups, 
then emphasizes the importance of shortest de-
pendency path in representing the constituent 
parse tree, and finally presents the shortest de-
pendency path-directed constituent parse tree 
(SDP-CPT). 

3.1 Limitations of Current Tree Setups 

It is widely acknowledged that the key problem 
for the success of tree kernel-based semantic re-
lation extraction is how to represent the constitu-
ent parse tree in a precise and concise manner. 
Zhang et al. (2006) explore five kinds of tree set-
ups and find that the Shortest Path-enclosed Tree 
(SPT) achieves the best performance. However, 
unlike the locality of semantic relations in the 
newswire domain (Zhou et al., 2005), most of 
PPI instances in the biomedical domain spans a 
relatively long distance, leading to more com-
plexity and diversity (Bunescu et al., 2005c; Ai-
rola et al., 2008). Therefore, it is not surprising 

that previous tree kernels over constituent parse 
trees have not yet achieved promising results for 
PPI extraction just as they do in the news domain. 
Miyao et al. (2008) conduct a comprehensive 
comparison of different syntactic representations 
for PPI extraction and find that the phrase struc-
ture tree in the form of the constituent parse tree 
(called PTB in their paper) performs significantly 
worse than the other representations. Tikk et al. 
(2010) extensively compares different kernel-
based methods on PPI extraction and show that 
the tree kernel over the constituent parse tree 
only achieves the F1-score of 34.6 on the AIMed 
corpus. Actually, our preliminary experiment on 
PPI extraction via the convolution tree kernel 
over SPT only achieves the F1-score of about 47 
on the AIMed corpus. Such poor performance 
can be justified to a certain extent via a typical 
instance as illustrated in Figure 1, where the in-
teraction between PROT1 and PROT2 (their ac-
tual names have been replaced) can be only de-
termined by the overall constituent structure of 
the sentence. Obviously, SPT will fail to identify 
this interaction instance since SPT ignores the 
constituents outside the shortest path (Figure 1: 
T2: SPT). 

For the Context-Sensitive SPT (CS-SPT), as 
proposed in Zhou et al. (2007a), which extends 
necessary predicate-linked path information out-
side SPT, some critical information is still miss-
ing while there exists some noisy information. 
For the instance as shown in Figure 1 (T3: CS-
SPT), although the word “detected” and its asso-
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ciated constituents are added, the more important 
portion of “association between” and their asso-
ciated constituents are still missing while the 
noisy words “cyclin B1 / ” still remaining. 

In order to overcome the shortcomings in SPT 
and CS-SPT, Qian et al. (2008) propose a dy-
namic syntactic parse tree (DSPT) by exploiting 
constituent dependencies to refine the constituent 
parse tree. Specifically, they manually devise 
five categories of constituent dependencies, mo-
tivated by various kinds of lexical dependencies. 
When refining each node along the shortest path 
in the constituent parse tree, these constituent 
dependencies are used to determine how to re-
move or reduce futile constituents, eventually 
leading to a more precise and concise parse tree 
structure. However, this tree structure still suffers 
from the following three shortcomings: 
1) It disregards the constituents beyond the low-

est common ancestor to the tree root, similar 
to CS-SPT as proposed in Zhou et al. (2007a). 
This may be largely due to the locality of se-
mantic relations as defined in the ACE RDC 
corpus, which Zhou et al (2007a) and Qian et 
al. (2008) tackle. 

2) The rules adopted to tackle constituent de-
pendencies are manually constructed and thus 
may not be easily adapted to other domains 
and languages. For example, while the con-
stituent dependencies related to noun phrases 
are effective in the newswire domain (e.g. the 
ACE RDC corpus), this may not be true for 
PPI extraction in the biomedical literature. 

3) The constituent dependencies have been di-
vided into only five categories. Such division 
may be too coarse to reflect the substantial 
difference between various kinds of depend-
encies (considering there are 55 kinds of mi-
nor-typed dependencies for the Stanford De-
pendency representation). 

In this paper, we attempt to address these 
problems by considering the shortest dependency 
path in the dependency parse tree for reshaping 
the constituent parse tree in a principled way in 
the context of PPI extraction from the biomedical 
literature. 

3.2 Shortest Dependency Path 

Lexical dependencies can indicate both local and 
long-range relationships among words occurring 
in the same sentence. Such dependency relation-
ships offer a condensed representation of the in-
formation necessary to assess the relationship 
between two proteins or entities. In order to 
capture the necessary information inherent in the 

depedency parse tree for extracting PPI instances, 
various kernels based on dependency paths, such 
as edit distance kernel (Erkan et al., 2007), all-
dependency-path graph kernel (Airola et al., 
2008), and walk-weighted subsequence kernels 
(Kim et al., 2010) have been proposed. Likewise 
for semantic relation extraction in the newswire 
domain, the kernels on dependency trees (Culotta 
and Sorensen, 2004) and the shortest dependency 
path (Bunescu et al., 2005b) have been proposed. 
One common characteristic to these kernels is 
that they all contain the shortest dependency path 
and usually assign more weights to them than to 
other ones, similar to the graph kernel proposed 
by Airola et al. (2008). This indicates the impor-
tance of the shortest dependency path over other 
paths in the dependency path tree or the depend-
ency graph. 

Currently, there are two established depend-
ency representations available, viz. CoNLL 
scheme (adopted by CoNLL’2007 and 
CoNLL’2008 Shared tasks) (Nivre et al., 2007; 
Surdeanu et al., 2008) and Standford scheme 
(adopted by Stanford parser) (de Marneffe et al., 
2006). These two schemes differ significantly in 
the representation of passive construction, posi-
tion of auxiliary and modal verb, or coordination. 
It is generally acknowledged that the Stanford 
scheme is closer to the targeted semantic repre-
sentation from the perspective of relation extrac-
tion (Buyko and Hahn, 2010). Particularly, 
among the four styles of Stanford representations, 
“collapsed dependency” can much simplify pat-
terns in relation extraction since dependencies 
involving preposition, conjunct as well as refer-
ent of relative clause are effectively collapsed to 
reflect direct dependencies between content 
words. Therefore, the collapsed variant of Stan-
ford scheme is adopted in this paper to refine the 
constituent parse tree as described in the next 
subsection. 

3.3 SDP-CPT: Shortest Dependency Path-
directed Constituent Parse Tree 

Considering the importance of dependency path 
in PPI extraction and the effectiveness of em-
ploying dependency information to refine the 
constituent parse tree for tree kernel-based se-
mantic relation extraction in the newswire do-
main, it is a natural idea to automatically gener-
ate the proper constituent parse tree with the help 
of the shortest dependency path. Specifically, we 
can reshape the constituent parse tree by making 
use of the shortest dependency path between two 
proteins. Figure 2 describes the procedure to 
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generate the Shortest Dependency Path-directed 
Constituent Parse Tree (SDP-CPT). 

Note that Step 3(a) in Figure 2 is necessary 
since a dependency tuple of the type 
“prep_xx(governor, dependent)” implies a rela-
tionship between the preposition xx and the de-
pendent, which is important to PPI. For Step 3(b), 
when a word on which the two proteins are di-
rectly or indirectly dependent is discovered, it is 
natural to add this path for maintaining the inte-
grality of SDP-CPT. 

 
Input: a sentence and two proteins in it 
Output: an SDP-CPT 
Steps: 
1) Given the input sentence, generate the constituent 

parse tree using a constituent parser, and various 
dependency tuples using a dependency parser. 

2) Given the two proteins, extract the shortest con-
stituent path (SCP, i.e. the shortest path-enclosed 
tree) from the constituent parse tree and construct 
the shortest dependency path (SDP) from the de-
pendency tuples. 

3) For each word along the SDP, add the corre-
sponding leaf word node and its upper constitu-
ents to the SCP. Particularly,  
a) when the dependency type is “prep_xx”, 

such as “prep_of”, the preposition xx  and its 
associated constituent are also added; 

b) when the word to be added is outside the 
SCP, a new path from the current lowest 
common ancestor to one of the added 
words’ ancestors is also added. 

4) Merge any two consecutive NP/VP nodes along 
the paths into a single one. 

 
Figure 2. Procedure for generating SDP-CPT 

 
Figure 3. Generation of an example of SDP-CPT 

In order to demonstrate the process of generat-
ing a SDP-CPT, we take the sentence and the 
two proteins shown in Figure 1 as an example. 
Figure 3 illustrates the detailed generation proc-
ess. First, the shortest dependency path (SDP) 
and the shortest constituent path (SCP) are gen-
erated as depicted in Figure 3(a) and 3(b) respec-
tively. Then, every word in the SDP is added into 
the SCP together with its associated constituents. 

In this case, since the two protein names in the 
SDP share a common ancestor “Association”, the 
word “Association” together with its constituent 
ancestors are added into the SCP and a new path 
“NP PP NP” is created as rendered by the 
dashed lines. Finally, since the dependency type 
between “PROT1” and “Association” is 
prep_between, the preposition word “between” 
and its constituent ancestors are added into the 
SCP as rendered by the dotted lines. Since no 
further post-processing is necessary in this ex-
ample, SDP-CPT is eventually formed. Com-
pared to other tree setups in Figure 1, namely 
SPT, CS-SPT and DSPT, obviously SDP-CPT is 
much more concise and precise for this PPI in-
stance. 

4 Experimentation  

This section systematically evaluates the per-
formance of our shortest dependency path-
directed constituent parse tree (SDP-SPT) on PPI 
extraction across several major PPI corpora. 

4.1 Data Sets and Preprocessing 

In order to fairly compare our work with other 
PPI extraction systems, we use five PPI corpora, 
i.e., AIMed (Bunescu et al., 2005a), BioInfer 
(Pyysalo et al., 2007), HPRD50 (Fundel et al., 
2007), IEPA (Ding et al., 2002) and LLL (Nédel-
lec, 2005). Particularly, most of the evaluation is 
done on the widely-used AIMed corpus, which 
contains 177 Medline abstracts with PPI in-
stances, and 48 abstracts without any PPI in-
stances. Totally, there are 4,084 protein refer-
ences and around 1,000 annotated protein-protein 
interactions in this data set. 

In this paper, a potential PPI instance is gener-
ated for any pair of two proteins in a sentence 
That is, if a sentence contains n proteins, (n 

2 ) 
protein pairs are generated. In particular, all the 
self-interactions (59 instances) are removed and 
all the PPI instances with nested protein names 
are retained (154 instances), as adopted in most 
literature. Eventually, 1000 positive instances 
and 4834 negative instances are generated. Be-
sides, for a potential PPI instance, the two in-
volved proteins are replaced by PROT1 and 
PROT2 respectively in order to blind the learner 
for fair comparison with other work. Finally, all 
the sentences in these corpora are parsed using 
the Stanford Parser1  to generate both the con-

                                                 
1 http://nlp.stanford.edu/software/lex-parser.shtml 
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stituent parse trees and their corresponding de-
pendency tuples. 

4.2 Classifier and Evaluation Metrics 

In our experimentation, we select Support Vector 
Machines (SVM) as the classifier since SVM 
represents the state-of-the-art in the machine 
learning research community. In particular, we 
use the SVMlight (Joachims, 1998) with the con-
volution tree kernel function SVMlight–TK (Mo-
schitti, 2004)2 to compute the similarity between 
two constituent parse trees. 

Evaluation is done using 10-fold document-
level cross-validation, each of which contains 
90% of documents as the training data and 10% 
as the test data. Particularly, for the AIMed cor-
pus we apply the exactly same 10-fold split as 
widely used in a series of relevant studies (e.g., 
Bunescu et al., 2005a; Giuliano et al., 2006). Fol-
lowing conventions, the parameters C for SVM is 
set to the ratio of negative instances to positive 
ones in respective corpora, and λ for the convolu-
tion tree kernel is set to default 0.4. Furthermore, 
the OAOD (One Answer per Occurrence in the 
Document) strategy is adopted, which means that 
the correct interaction must be extracted for each 
occurrence. This guarantees the maximal use of 
the available data, and more importantly, allows 
fair comparison with relevant work. All the ex-
periments are evaluated using commonly-used 
Precision (P), Recall (R) and harmonic F1-score 
(F1). As an alternative to F1-score, the AUC 
(area under the receiver operating characteris-
tics curve) score is proved to be invariant to the 
class distribution of the test dataset. Therefore, 
we also provide the AUC score of our system for 
referrence as by Airola et al. (2008). 

4.3 Experimental Results 

Comparison of different lengths of depend-
ency paths on the AIMed corpus 

Table 1 reports the performance of PPI extrac-
tion on the AIMed corpus corresponding to dif-
ferent lengths of the dependency paths using all 
kinds of dependency types. Here, two partial de-
pendency paths on SDP, starting from each of 
the two proteins respectively, are utilized to gen-
erate the tree representation. The length of these 
two paths is shown in the 1st column. The words 
corresponding to the nodes on these two paths 
together with these words’ associated constitu-
ents in the parse tree are added to SCP. For ex-

                                                 
2 http://ai-nlp.info.uniroma2.it/moschitti/ 

ample, the length of 0 (L0) means that not a sin-
gle word or constituent will be added to SCP, 
while the length of 1 (L1) means that the words 
corresponding to the parents of two proteins on 
SDP and these words’ associated constituents in 
the parse tree are added to SCP. Meanwhile, the 
performance of the SPT setup is also listed as the 
baseline for comparison. 

Length P (%) R (%) F1 AUC
SPT 57.0 40.7 47.1 79.9
SCP+L0 (SCP) 45.0 19.5 26.5 67.9
SCP+L1 59.7 45.8 51.4 80.2
SCP+L2 59.2 51.7 55.0 82.3
SCP+L3 58.0 51.9 54.6 82.2
SCP+L4 59.3 54.0 56.2 82.6
SDP-CPT 59.6 54.3 56.7 82.7

Table 1. Performance comparison of PPI extraction 
on the AIMed corpus with different lengths of de-

pendency paths using all kinds of dependency types 

This table shows that the constituent parse 
tree directed by the shortest dependency path 
(SDP-CPT) achieves the best performance of 
59.6/54.3/56.7/82.7 in P/R/F1/AUC, significantly  
outperforming SPT by 9.6 units in F1 and 2.8 
units in AUC largely due to the substantial in-
crease in recall. This indicates that SDP-CPT can 
remove much noise in SPT while adding some 
useful information. It also shows 

 The performance of the SCP corresponding to 
the length of 0 is lowest, since they contain 
no information derived from the shortest de-
pendency path. 

 With the increase of the length of dependency 
paths, more and more useful information de-
rived from SDP is included in the constituent 
parse tree and the performance reaches the 
highest for SDP-CPT (all the words corre-
sponding to all the nodes on the SDP and 
their associated constituents are added). 

In summary, the above results suggest that 
SDP-CPT can achieve the best performance. 
Therefore, all the subsequent experiments adopt 
the SDP-CPT setup unless specified. 

Contribution of different kinds of dependen-
cies on the AIMed corpus 

Table 2 compares the contribution of various 
kinds of dependencies in SDP-CPT on the 
AIMed corpus. All the typed dependency rela-
tions are grouped into 4 major classes, namely 
Modifier, Argument, Conjunction and Others. 
For every major type, minor dependency types, if 
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any exists, are further ordered by their potential 
importance. The percentage of occurring fre-
quency with which each minor type is employed 
when generating the SDP-CPT with respect to 
the total number of dependency tuples is listed in 
Column 2. Particularly, the tree setup without 
using any dependency type, which corresponds 
to that with the length of 0 (SCP) in Table 1, is 
displayed at the top row. Furthermore, the de-
pendency types are added in two different ways: 

 Individual: the dependency types are added 
individually with their performance scores 
shown inside the parentheses; 

 Accumulative: the dependency types are in-
crementally added one by one with their per-
formance scores shown outside the parenthe-
ses. The “+” sign before the type means that 
its addition can boost the performance in F1-
score or AUC score and thus will be passed 
down to the next iteration. 

Typed 
Dependency % P(%) R(%) F1 AUC

SCP+L0 - 45.0 19.5 26.5 67.9
Argument 

  +subj 10 52.5
(52.6) 

33.2 
(33.2) 

40.4
(40.4)

72.7
(72.7)

  +obj 31 56.2
(53.8) 

46.2 
(42.4) 

50.4
(47.0)

76.6
(76.6)

  +arg-others 2 56.1
(48.8) 

47.0 
(14.6) 

50.9
(21.3)

76.5
(68.6)

Modifier 

+nn 10 58.1
(54.9) 

53.4 
(38.5) 

55.1
(44.6)

81.4
(77.5)

+prep 20 58.2
(53.4) 

55.2 
(39.2) 

56.6
(44.8)

83.1
(76.2)

+mod-others 5 59.1
(46.8) 

57.6 
(15.7) 

58.1
(22.3)

83.3
(67.3)

Conjunction 12 58.9
(48.9) 

55.0 
(23.5) 

56.7
(30.5)

82.8
(69.8)

Others 10 58.4
(47.5) 

53.8 
(14.8) 

55.8
(20.4)

83.0
(69.5)

Table 2. Contribution of different typed dependencies 
on the AIMed corpus with the SDP-CPT setup in the 
accumulative mode (outside parentheses) and in the 

individual mode (inside parentheses) 

Table 2 shows that with the addition of all Ar-
gument types and all Modifier types, the SDP-
CPT attains the best performance of 
59.1/57.6/58.1/83.3 in P/R/F1/AUC as shown in 
bold fonts,  outperforming the SDP-CPT with  all 
dependency types added (59.6/54.3/56.7/82.7 in 
P/R/F1/AUC). Particularly, it shows 

 The dependency types of subj, obj, prep and 
nn yield substantial performance improve-

ment both in the accumulative mode and in 
the individual mode;  

 The dependency types of Conjunction and 
Others harm the performance in the accumu-
lative mode, though Conjunction improves 
the performance in the individual mode; 

 It is interesting to note that while the depend-
ency types of arg-others and mod-others 
harm the performance in the individual mode, 
they slightly improve the performance in the 
accumulative mode. 

Since the governors of subj and obj types are 
verbs, those of the prep type are nouns and 
prepositions, and those of the nn type are nouns, 
the above results are consistent with our observa-
tion that some verbs like “bind” or “interact”, 
some prepositions like “with” or “of”, and some 
nouns like “interaction” or “expression”, on 
which two proteins are directly or indirectly de-
pendent, are particularly important for PPI ex-
traction. Henceforth, in the following experi-
ments all the Argument and Modifier types are 
included while the Conjunction and Others types 
are excluded. 

Tree 
setups AIMed BioIn-

fer 
HPRD

50 IEPA LLL 

Ratio of
POS/NEG

1000/
4834

2534/
7119

163/ 
270 

335/ 
482 

164/
166 

MCT 31.8
(78.0)

53.8
(76.7)

48.0 
(73.4) 

62.3 
(78.6) 

77.1
(73.4)

SPT 
(baseline)

47.1
(79.9)

54.2
(73.7)

61.3 
(81.6) 

66.6 
(82.2) 

79.4
(86.1)

CS-SPT 46.5
(80.2)

54.5
(74.5)

63.6 
(79.9) 

66.8 
(81.0) 

80.1
(86.0)

DSPT 50.0
(77.8)

58.3
(78.5)

66.0 
(80.3) 

68.6 
(80.9) 

77.3
(79.3)

SDP-CPT 58.1 

(83.3)
62.4 

(83.6)
68.8 

(83.4) 
69.8 

(82.0) 
84.6

(89.2)

Table 3. Comparison of F1-score(outside parentheses) 
and AUC(inside parentheses) between SDP-CPT and 

different tree setups across major PPI corpora 

Comparison of different constituent parse tree 
structures across major PPI corpora 

Table 3 compares the performance of F1-score 
(outside parenthesis) and AUC (inside parenthe-
ses) between SDP-CPT and the previously-used 
tree setups across major PPI corpora. Particularly, 
SPT is used as a baseline and for comparison we 
re-implement two other effective tree setups for 
semantic relation extraction in the newswire do-
main, i.e. CS-SPT (Zhou et al., 2007a) and DSPT 
(Qian et al., 2008). Significance tests are con-
ducted between each of them and the baseline. 
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Additionally, the numbers of positive and nega-
tive instances in each corpus are reported in the 
1st row and the performance scores of MCT 
(Minimum Complete Tree, the complete sub-tree 
rooted by the lowest common ancestor of the two 
proteins under consideration) are also listed in 
the 2nd row for reference. The table shows 

 Among all tree setups SDP-CPT performs 
best and significantly outperforms SPT con-
sistently on most PPI corpora. 

 CS-SPT slightly outperforms SPT on most 
corpora while DSPT performs divergently on 
different corpora. The reason that DSPT per-
forms excellently in the newswire domain 
(Qian et al., 2008) but not so much for PPI 
extraction may be that the heuristic rules they 
use to prune the constituent trees are more 
suitable for the newswire domain, thus limit-
ing their capability of domain adaptation.  

In summary, the above results suggest the su-
periority and generality of our SDP-CPT on 
various kinds of PPI corpora from the biomedical 
literature. 

PPI extraction systems P(%) R(%) F1 

Our SDP-CPT kernel 59.1 57.6 58.1

Dependency path: 
Kim et al. (2010) 61.4 53.3 56.7

Dependency graph: 
Airola et al. (2008) 52.9 61.8 56.4

Word subsequence: 
Bunescu et al. (2005a) 65.0 46.4 54.2

Constituent parse tree: 
Tikk et al. (2010) 39.2 31.9 34.6

BOW+Dependency path: 
Sætre et al. (2007) 64.3 44.1 52.0

BOW+Constituent parse tree: 
Miyao et al. (2008) 50.9 56.1 53.0

Global+Local context: 
Giuliano et al. (2006)  60.9 57.2 59.0

Dependency+Predicate 
Argument Structure: 
Miyao et al. (2008) 

54.9 65.5 59.5

BOW+Shortest 
Path+Depencency graph: 
Miwa et al. (2009) 

- - 64.2

Table 4. Performance comparison of kernel-based PPI 
extraction systems on the AIMed corpus 

 

Comparison of kernel-based PPI extraction 
systems on the AIMed corpus 
Table 4 compares our kernel-based system with 
other state-of-the-art kernel-based ones on the 
AIMed corpus using the exactly same 10-fold 
data splitting. It shows that our individual kernel-
based system performs better than all the other 
individual kernel-based systems on the AIMed 
corpus. Particularly, our SDP-CPT kernel sig-
nificantly outperforms the Partial Tree kernel 
over constituent parse trees (Tikk et al., 2010). It 
even significantly outperforms the composite 
kernel combining BOW and constituent parse 
trees (Miyao et al., 2008).  Although our individ-
ual kernel performs worse than the composite 
kernels as adopted by Miyao et al. (2008) and 
Miwa et al. (2009), the strength of our kernel-
based system lies in the simplicity of our shortest 
dependency path-directed constituent parse tree. 

5 Conclusion and Future Work 

This paper presents a principled way to auto-
matically generate the constituent parse tree for 
PPI extraction by making use of the shortest de-
pendency path between two proteins. Although  
previous research indicates the difficulty of em-
ploying constituent parse tree information for 
PPI extraction due to the relatively long distance 
between two proteins, our detailed analysis and 
evaluation indicate that the constituent parse tree 
can achieve promising results for PPI extraction. 
Moreover, our dependency-directed constituent 
parse tree structure provides a general way to 
automatically determine the constituent parse 
tree for a wide class of related learning tasks, 
such as semantic relation extraction, semantic 
role labeling and even coreference resolution. 

For future work, we would like to apply our 
approach to other NLP tasks. Meanwhile, we 
will investigate the effect of constituent parse 
information on dependency-based relational 
learning in better exploring the synergy between 
dependency and constituent-based syntactic in-
formation. 
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