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Abstract

Named Entity Recognition (NER) is a
well-known Natural Language Processing
(NLP) task, used as a preliminary process-
ing to provide a semantic level to more
complex tasks. In this paper we describe a
new set of named entities having a multi-
level tree structure, where base entities are
combined to define more complex ones.
This definition makes the NER task more
complex than previous tasks, even more
due to the use of noisy data for the anno-
tation: transcriptions of French broadcast
data. We propose an original and effec-
tive system to tackle this new task, putting
together the strengths of solutions for se-
quence labeling approaches and syntactic
parsing via cascading of different mod-
els. Our system was evaluated in the 2011
Quaero named entity detection evaluation
campaign and ranked first, with results far
better than those of the other participating
systems.

1 Introduction

Named Entity Detection is a well-known NLP
task used to extract semantic information in other
more complex tasks such as Relation Extrac-
tion (Doddington et al., 2004) or Question An-
swering (Voorhees, 2001). After its definition
in MUC-6 (Grishman and Sundheim, 1996), the
NER task evolved increasing its complexity. Cur-
rent definitions provide a fine-grained semantic in-
formation level with a broad coverage (Sekine,
2004). This has increased the interests in devel-
oping named entity detection systems.

In this paper we describe a new set of named en-
tities defined recently(Grouin et al., 2011). These
named entities have a multilevel tree structure
where components are combined to define more

complex and general entity structures. This defi-
nition increases significantly the complexity of the
NER task, even more due to the type of data used
for the annotation: manual and automatic tran-
scriptions of French broadcast data.

Given such a definition, it is not possible to
tackle the task with traditional sequence labeling
approaches. At the same time, solutions able to re-
construct tree structures from flat sequences, like
syntactic parsing solutions, may have serious lim-
itations, due to the noisy data used. In order to
solve these problems, we studied and implemented
a two-stage system that put together the strengths
of the two approaches: i) a complex linear-chain
Conditional Random Field (CRF) model, integrat-
ing a huge number of features, takes the noisy data
as input and generates the corresponding sequence
of components; ii) a syntactic parsing model based
on Probabilistic Context Free Grammar (PCFG)
reconstructs the tree-structured named entities.

We describe our solution showing that it is
equivalent, in the processing steps, to a syntac-
tic parsing analysis solution, and that it can better
handle noisy data. Additionally, given the amount
of data used and the relatively slow training time
of CRF models when using large amount of data
and features, we describe a procedure for incre-
mental CRF model training that solves this partic-
ular efficiency problem. The system we propose
ranked first at the 2011 Quaero NER evaluation
campaign (Galibert et al., 2011), with results far
better than those of the other participating sys-
tems, though results on automatic transcriptions
are largely affected by ASR system errors.

The remainder of the paper is organized as fol-
lows: in the next section we describe the new set
of named entities defined and the data used for an-
notation. In section 3 we describe the system we
propose, and implemented for the 2011 Quaero
Named Entity Recognition evaluation campaign.
In section 4 we detail the experimental setup, and
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Figure 1: Examples of structured named entities defined within the
Quaero project. Left: Iraqi Governing Council
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Figure 2: An example of named entity tree corresponding to entities of
a whole sentence. Tree leaves, corresponding to sentence words have been
removed to keep readability.

describe and comment the results. Finally in sec-
tion 5 we draw our conclusions and propose some
perspectives for future work.

2 Towards Tree Structured Named
Entities

Named Entity Recognition was first defined as rec-
ognizing proper names (Coates-Stephens, 1992).
Since MUC-6 (Grishman and Sundheim, 1996)
named entities are proper names falling into three
major classes: persons, locations and organiza-
tions. There are some propositions to sub-divide
these entities into fine-grained classes. For exam-
ple, politicians for the person class (Fleischman
and Hovy, 2002) or cities for the location class
(Fleischman, 2001). Some are sometimes added
like product (Bick, 2004; Galliano et al., 2009).

Recently some extensions of named entity have
been proposed. For example, (Sekine, 2004) de-
fined a complete hierarchy of named entities con-
taining about 200 types.

A well-known task of named entity detection
is the one proposed for the CoNLL shared task
2003, described in (Tjong Kim Sang and De Meul-
der, 2003), where only four named entities were
involved: Person, Organization, Location and
Other. The latter was used for proper names be-
longing to any other entity different from the first
three types.

After this task, named entity detection has been
refined to include other entities, e.g. describ-
ing time expressions, events, quantity, currency
etc. Current named entity detection tasks pro-
vide a fine-grained semantic representation level
of the lexical surface form, sometimes comparable

to other semantic representations like those used
in Semantic Role Labeling (Carreras and Mar-
quez, 2005) or Spoken Language Understanding
(De Mori et al., 2008). The increasing complexity
of named entities definition reflects the change of
needs in computer science activities, that in turn is
the consequence of the tremendous growth of the
amount of information to deal with nowadays.

The set of named entities used in this work has
been recently defined in (Grouin et al., 2011) and
presents an important difference with respect to
previous sets. Beyond the presence of subtypes,
named entities have a tree structure. For example,
the Organization type can be characterized by the
subtypes administrative or enterprise giving the
named entities org.adm and org.ent starting from
the entity org. Each entity is composed of at least
one component, which trigger in any case an entity
type. The component allows to characterize more
precisely the semantic content of the entity. For
example the entity pers, used to describe persons,
has, among others, the components name.first, for
first name, and name.last, for last name. The pres-
ence of either name.first or name.last (or both)
triggers the entity pers. The results of the com-
position is a tree-structured named entity. Two ex-
amples of structured named entities are shown in
figure 1. In addition we report a named entity tree
in figure 2, where words, corresponding to tree
leaves, have been removed to keep readability, and
it was generated starting from the sentence:

90 personnes toujours présentes à
Atambua c’est là qu’hier matin ont
été tués 3 employés du haut commis-
sariat des Nations unies aux réfugiés,
le HCR1

Here words realizing entities have been high-
lighted in bold. More details on the definition
of this new set of named entities can be found in
(Grouin et al., 2011), where also statistics on inter-
annotators agreements are reported.
Given this structured named entities definition,
the corresponding NER task is significantly more
complex than previous equivalent tasks, where the
entity structure was flat. Moreover, the complex-
ity of the task is increased also by the type of data
used for the annotation, that is manual and auto-
matic transcriptions of French broadcast data. In

190 people still present in Atambua is where yesterday
morning killed three employees of the United Nations High
Commissioner for Refugees UNHCR.
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Quaero training dev
# sentences 43,251 112

words entities words entities
# tokens 1,251,432 245,880 2,659 570
# vocabulary 39,631 134 891 30
# components – 133662 – 971
# components dict. – 28 – 18
# OOV rate [%] – – 17.15 0

Table 1: Statistics on the training and development sets of the Quaero
corpus.

Quaero test BN test BC
# sentences 1704 3933

words entities words entities
# tokens 32945 2762 69414 2769
# vocabulary 28 28
# components – 4128 – 4017
# components dict. – 21 – 20
# OOV rate [%] 3.63 0 3.84 0

Table 2: Statistics on the test set of the Quaero corpus, divided in Broad-
cast News (BN) and Broadcast Conversations (BC)

particular the data have been collected not only
from French radio channels, but also from a North-
African French-speaking radio channel. This as-
pect introduces complexity due to different ex-
pressions used from French non-native speakers as
well as to their particular accents and sometimes
vocabulary.

The training data are the same used for the ES-
TER2 evaluation campaign (Galliano et al., 2009).
The transcriptions have been re-annotated with the
named entities described above.

The corpus will be referred in this work as
Quaero. Description of training, development
and test data are reported in table 1 and 2. In
particular the test set is constituted by different
kind of data: transcriptions of broadcast news, and
broadcast conversations. the merge of the first two
types. An interesting point in table 1 and 2 is the
Out-of-Vocabulary (OOV) rate of dev and test sets.

3 Tree-Structured Named Entity
Detection System

Given the definition of named entities described in
previous section, we consider that, even if possi-
ble, the best solution cannot be a sequence label-
ing approach as largely used in standard named en-
tity detection task (Tjong Kim Sang and De Meul-
der, 2003). In contrast, an approach coming from
syntactic parsing would be possible. In that case
syntactic parse trees could be replaced by named
entity trees like the one shown in figure 22.

A first problem with this choice is constituted
by the noisy data involved in our task. Indeed,
our preliminary evaluations of a classic algorithm
used successfully for syntactic parsing, resulted in

2where words are not shown for readability reason

quite poor results. Note also that most syntactic
parsing solutions, are designed to perform parsing
using Part-of-Speech (POS) tags, annotated upon
words, as tree leaves, instead of words. This solu-
tion introduces a good generalization over surface
forms, allowing algorithms to deal with relatively
noisy data, although the same solutions proved to
be much less effective on automatic transcriptions.
Moreover, this solution is effective for syntactic
parsing, since syntactic constituents are directly
related to POS tags, but it would not be reason-
able for named entity detection, since the gener-
alization introduced by POS tags over lexical sur-
face forms would make it impossible to discrim-
inate between different entities. Indeed, most of
the named entities syntactic heads are known to
be nouns. Additionally, since our named entity de-
tection task must be performed also on automatic
transcriptions containing ASR mistakes, a solution
designed for syntactic parsing and adapted to be
applied directly on lexical surface forms would be
not robust enough, due to OOV words and ASR
mistakes that alter significantly the syntactic struc-
ture of the input sentence. Our idea is thus to split
the annotation process in two phases:

1. In the first step we use a model robust to noisy
input and Out-of-Vocabulary words in order
to annotate entity components, i.e. compo-
nents of named entities that can be annotated
directly on words (tree leaves in figure 2).

2. In the second step we use a model for syntac-
tic parsing in order to reconstruct the entire
entity trees.

The first step is a sequence segmentation and la-
beling task, thus any model suitable for this kind
of problems can be adopted. Given its character-
istics and its success in sequence labeling tasks,
we adopt CRF (Lafferty et al., 2001) for the first
step. For the second step we adopt a Probabilis-
tic Context-Free Grammar (Booth and Thomson,
1973; Krenn and Samuelsson, 1997). The next
two subsections describe these two models.

3.1 Linear-Chain Conditional Random
Fields

CRFs have been proposed for the first time for se-
quence segmentation and labeling tasks in (Laf-
ferty et al., 2001). This model belongs to the fam-
ily of exponential or log-linear models. Its main
characteristics are the possibility to include a huge
number of features, like the Maximum Entropy
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model, but computing global conditional probabil-
ities normalized at sentence level, instead of posi-
tion level. In particular this last point results very
effective since it solves the label bias problem, as
pointed out in (Lafferty et al., 2001).

Given a sequence of N words WN
1 =

w1, ..., wN and its corresponding sequence of
named entities EN

1 = e1, ..., eN , CRF trains the
conditional probabilities

P (E
N
1 |W

N
1 ) =

1

Z

NY
n=1

exp

 
MX

m=1

λm · hm(en−1, en, w
n+2
n−2)

!
(1)

where λm are the training parameters.
hm(en−1, en, w

n+2
n−2) are the feature functions

capturing conditional dependencies of entities
and words. Z is a probability normalization
factor in order to model well defined probability
distribution:

Z =
X
ẽN1

NY
n=1

H(ẽn−1, ẽn, w
n+2
n−2) (2)

where ẽn−1 and ẽn are the entities hypoth-
esized for the previous and current words,
H(ẽn−1, ẽn, w

n+2
n−2) is an abbreviation for∑M

m=1 λm · hm(en−1, en, w
n+2
n−2).

Two particular effective implementations of
CRFs have been recently proposed. One is de-
scribed in (Hahn et al., 2009) and uses a margin
based training criteria for probabilities estimation.
The other is described in (Lavergne et al., 2010)
and has been implemented in the software wapiti3.
The latter solution in particular trains the model
using two different regularization parameters at
the same time: Gaussian prior, also known as l2
regularization and used in many software to avoid
over fitting; and Laplacian prior, also known as
l1 regularization (Riezler and Vasserman, 2010),
which has the effect to filter out features with
very low scores. These two regularization param-
eters are used together in the model implementing
the so-called elastic net regularization (Zou and
Hastie, 2005):

l(λ) + ρ1‖λ‖1 +
ρ2

2
‖λ‖22 (3)

λ is the set of parameters of the model intro-
duced in equation 1, l(λ) is the minus-logarithm of
equation 1, used as loss function for training CRF.
‖λ‖1 and ‖λ‖2 are the l1 and l2 regularization, re-
spectively, while ρ1 and ρ2 are two parameters that
can be optimized as usual on development data or
with cross validation.

3available at http://wapiti.limsi.fr

As explained in (Lavergne et al., 2010), using
l1 regularization is an effective way for feature se-
lection in CRF at training time. Note that other ap-
proaches have been proposed for feature selection,
e.g. in (McCallum, 2003). In this work we refer to
the CRF implementation described in (Lavergne et
al., 2010).

3.1.1 Incremental CRF Training
Despite the improvements on CRF implementa-
tions, this model remains hard to train on large
amount of data when using a reasonable amount
of features. Using the data described in section 2
and using features as word prefixes and suffixes,
capitalization, punctuation and morpho-syntactic
features, our CRF model creates more than 2 bil-
lions feature functions. Training such a model is
infeasible on current machines.

Exploiting the characteristics of the CRF soft-
ware wapiti and the definition of feature func-
tions, we implemented a procedure for incremen-
tal training of CRF models that can be used with
an arbitrary number of features. Feature functions
hm(en−1, en, w

n+2
n−2) used in our CRF models have

the form:

hw,e(ei, wi) = δ(w
′
i , wi) · δ(e

′
i, ei) (4)

where δ(., .) is the Kronecker function. This
particular function fires when the current word w

′
i

in the sequence matches wi and the corresponding
entity e

′
i matches ei. When using such simple fea-

tures, there is usually no limitation on the amount
of data that can be used for training. Indeed, more
accurate models can be trained using complex fea-
tures, using also words and entities at previous or
next positions, i.e. adjacent tokens. For example:

hw,e(ei, wi) = δ(w
′
i−1, wi−1) · δ(w

′
i , wi) (5)

·δ(e
′
i−1, ei−1) · δ(e

′
i, ei)

This feature function fires if both words and en-
tities at current and previous positions match. The
higher accuracy reached with this type of features
is paid at training time with the number of feature
function generated in situations like the one re-
ported above, and makes direct CRF model train-
ing unfeasible. The solution to this limitation is
given observing that:

1. The software we use for CRF model training
performs an effective feature selection thanks
to l1 regularization and can reload models for
further refinements.
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2. Feature functions like 5 fire if and only if both
words and both entities at previous and cur-
rent position matches.

The second point means that if a simple feature
matching only the word (and/or entity) at current
position is filtered away from l1 regularization,
it doesn’t make sense to include in the training
any complex feature function involving that word
(and/or entity). In order to train our model using
all the features, we proceed in three different steps:

1. we train a model with simple feature func-
tions like 4

2. we search the model for simple feature
functions corresponding to adjacent words
(and/or entities), that in turn corresponds to
complex features

3. we retrain the model where we added the
complex features found at previous step

In the second step, the features kept in the
model are some order of magnitude fewer in num-
ber than those generated including directly com-
plex features in step 1, like it can be done with
less data. As a consequence, the number of com-
plex features is limited. Moreover, the fact that
simple feature functions must correspond to adja-
cent words (and/or entities) is a further constraint
for the number of added features. As we will see
in section 4.1, training CRF model with this pro-
cedure provides the same prediction accuracy than
what we could have training the model directly
with all features.

3.2 Structured Named Entities
Reconstruction

Models described in this section are well-known
solutions for syntactic parsing. We report them
to provide a self-contained and complet work, our
main contribution in this respect is to have imple-
mented and adapted algorithms to our task.

The model we use for entity tree reconstruc-
tion is PCFG (Booth and Thomson, 1973; Krenn
and Samuelsson, 1997). There are more accurate
models for the same purpose, e.g. the one used
in (Charniak and Johnson, 2005). In practice, the
first annotation step being carried out with CRF,
which provide a high robustness on noisy data,
there is no need for complex and expensive mod-
els. Moreover PCFG are quite accurate and very
fast for parsing (Collins and Koo, 2005).

The input of the CRF model described in the
previous section is a sentence like the one reported

in section 24. The output is the sequence of enti-
ties corresponding to the leaves of the tree in Fig-
ure 2, i.e. entity tree components. For example
the chunk Nations unies (United Nations) is an-
notated by CRF as

org.adm-B{Nations} org.adm-I{unies}
where suffixes -B and -I (for Begin and Inside)

are used to have a one-to-one correspondence be-
tween words and entities. This makes the NER
task a sequence segmentation and labeling prob-
lem, without having to deal with alignment issues.
From the annotation above it is immediate to re-
construct the annotation

org.adm{Nations unies}
Afterwards words are removed and only com-

ponents are used as input of the PCFG model to
reconstruct the entity tree. In our example, the in-
put would then be:
val object name time-modifier val kind name.
PCFG production rules are extracted directly from
the trees. For example from the tree in Figure 2
the following set of rules is extracted:

S⇒ amount loc.adm.town ... org.adm
amount⇒ val object
time.date.rel⇒ name time-modifier
object⇒ func.coll
func.coll⇒ kind org.adm
org.adm⇒ name

where the first production as been cut to keep
readability and corresponds to the children of the
tree root S. Once the rules have been generated
from all trees in the training set, probabilities are
estimated with simple maximum likelihood esti-
mation as the probability of a production given
the right-hand side (RHS) of the rule. The pars-
ing algorithm using the PCFG generated from en-
tity trees is the Cocke-Younger-Kasami (CYK) de-
scribed in (Johnson, 1998). In order to use this
algorithm production rules must be in Chomsky
Normal Form (CNF), i.e. rules must have one of
the two forms: i)Xi ⇒ XjXk; ii)Xi ⇒ w, where
X are non-terminal symbols and w are terminal
symbols. The corresponding probabilities are

pi→j,k =
P (Xi ⇒ Xj , Xk)

P (Xi)
(6)

pi→w =
P (Xi ⇒ w)

P (Xi)
(7)

490 personnes toujours présentes à Atambua c’ est là qu’
hier matin ont été tués 3 employés du haut commissariat des
Nations unies aux réfugiés , le HCR
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There are well-known algorithms to convert a
grammar into CNF, e.g. (Krenn and Samuelsson,
1997). Probabilities are then re-estimated using
the Expectation Maximization algorithm called
Inside-Outside (Krenn and Samuelsson, 1997).
The latter is equivalent to the forward-backword
algorithm for HMM (Rabiner, 1989), where Inside
and Outside variables are used instead of Forward
and Backward variables.

Inside variables Iwi (s, t) store the probability
P (Xi ⇒∗ ws,t | Xi), that is the probability of pro-
ducing the sub-sequence ws,t = ws, ..., wt of the
string w1,T = w1, ..., wT from the non-terminal
symbol Xi, given the non-terminal symbol Xi, in
any number of steps (⇒∗ is the closure of the pro-
duction symbol ⇒). Outside variables Ow

i (s, t)
store the probability P (S ⇒∗ w0,s, Xi,wt,T |
S), that is the probability of producing the sub-
sequence w0, ..., ws, Xi, wt, ..., wT from the root
symbol S, given the root symbol S.

Probability re-estimation consists in computing
the quantities P (Xi ⇒ Xj , Xk), P (Xi ⇒ w) and
P (Xi) in terms of Inside and Outside variables.
This give a new estimation of rules probabilities
that is used to re-compute Inside and Outside vari-
ables. This procedure is repeated until a conver-
gence criterion is met, e.g. the likelihood doesn’t
increase significantly.

Given the two annotation steps implemented
with CRF and PCFG, our system is in principle
equivalent to a single system for syntactic parsing
performing a “one-shot” annotation. In particu-
lar, solutions like (Charniak and Johnson, 2005)
and (Collins and Koo, 2005) use POS tags as tree
leaves. This has a two-fold benefit: i) introduces a
generalization level over surface forms; ii) provide
to the parsing algorithm only the essential infor-
mation, since POS tags are directly related to syn-
tactic constituents and are sufficient to induce the
syntactic structure of a sentence. In our system,
the role played by POS tags in syntactic parsing is
played by entity components, annotated by CRF.In
contrast, for named entity annotation it is not true
that components are sufficient to induce the entity
tree. Nevertheless, as we will see in next section,
this solution does not prevent having good results.

4 Experiments and Results

In this section we first describe the experimental
setup, and then we discuss the results. As men-
tioned in section 3.1, the software used for CRF

models is wapiti.5 The procedure for incremental
training of CRF models is realized with our own
software. We didn’t optimize parameters ρ1 and
ρ2 of the elastic net (see section 3.1), default val-
ues lead in most cases to very accurate models.
We used a wide set of features in CRF models, in
a window of [-2,+2] around the target word:

• A set of standard features like word prefixes
and suffixes of length from 1 to 5, plus some
Yes/No features like “Does the word start
with capital letter ?” “Does the word con-
tain non alphanumeric characters ?”, etc.
• Morpho-syntactic features extracted from the

output of the tool tagger (Allauzen and
Bonneau-Maynard, 2008)
• Features extracted from the output of the tool

WMatch (Galibert, 2009; Rosset et al., 2008).

The output provided by WMatch contains de-
tailed motpho-syntactic information as well as se-
mantic information at the same level of named en-
tities. Concerning the PCFG model, for prelimi-
nary studies we used our own implementation, but
for this work we used the much faster implemen-
tation described in (Johnson, 1998).6

Concerning data, for preliminary studies carried
out to validate our incremental training procedure,
we used the same data used in the ESTER2 named
entity detection evaluation campaign, Thus our re-
sults can be directly compared with those reported
in (Galliano et al., 2009).

The final results of the 2011 Quaero evaluation
campaign are obtained on the data described in
section 2. The test data contains transcriptions of
both broadcast news and broadcast conversation
data. Results are provided on both manual and au-
tomatic transcriptions. In the last case, three dif-
ferent ASR systems were used in order to study
robustness of the named entity detection systems
with respect to different ASR errors and accu-
racies. These systems are referred to as ASR1,
ASR2 and ASR3 and have word error rates of:

• 16.32%, 18.77%, 24.06% on broadcast news

• 23.34%, 22.99%, 29.18% on broadcast con-
versations

• 20.96%, 21.56%, 27.44% on the whole test
data

5available at http://wapiti.limsi.fr
6available at http://web.science.mq.edu.au/

m̃johnson/Software.htm
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CRF model training Incremental procedure
Model features SER Model features SER
Words 27.4% Words+MS+WM unigrams 24.6%
+ MS 26.3% – –
+ WM 22.8% + Observation bigrams 20.6%
+ MS + WM 20.0% + Label bigrams 20.0%

Table 3: Results of CRF models on ESTER2 task obtained with a
“normal” training procedure and our incremental procedure. MS are morpho-
syntactic features, WM are features extracted from WMatch output

Model DEV TEST
CRF (SER) 24.8% 26.7%
CYKref. (NER) 6.8% 7.4%
CYK (SER) 30.9% 33.3%

Table 4: Results of preliminary experiments obtained with the CRF
model and with PCFG separately

Additionally, since manual transcriptions were
provided with punctuation, the ASR1 output has
been automatically annotated with punctuation to
try to fit manual transcription conditions.

All results are reported in terms of Slot Error
Rate (SER) (Makhoul et al., 1999), which has a
similar definition of word error rate for ASR sys-
tems, with the difference that correct entity with
wrong boundaries and wrong entity with correct
boundaries are given half points.

4.1 Results

4.1.1 Evaluation of the incremental
procedure

Our incremental procedure was evaluated and re-
sults are reported in table 3. We compare two
models trained and tested on the ESTER2 data
used for the evaluation described in (Galliano et
al., 2009). The two models are based on the same
features, described in previous section, but use
them in two different ways: In the first model,
trained with “traditional procedure”, the three dif-
ferent type of features (words, features from tag-
ger and features from WMatch) were integrated
in three different steps, using each time unigrams
and bigrams on observations and labels. The three
steps are mandatory since the total amount of fea-
tures would not fit into memory.
In the second model, we used directly all type of
features, but generating at first only simple fea-
tures. 3.1.1. In the two other training steps, we
added compound features, i.e. bigrams of obser-
vations and labels, and we retrained at each step.
As we can see from results in table 3, the two
models reach the same final accuracy (a SER of
20.0%), which proves that our incremental train-
ing procedure doesn’t leave out meaningful fea-
tures. Additionally, although we don’t report train-
ing time, we can comment that CRF model train-
ing was roughly 10 times faster with our incre-

Average score Feature type
0.114053 wrd-2
0.0988316 Pre4
0.0914648 Wrd-1
0.084988 wrd-1
0.083699 Suf4
0.0751365 Pre3
0.0745788 WMatch2-2
0.0483077 WMatch1-1
– ...
0.00889771 POS+agree-1
0.00810903 WMatch4-1
0.00789857 POS-2
-0.0022887 POS+type-1
-0.0262062 POS-1
-0.0294334 Suf1
-0.0337793 Pre1

Table 5: Ranks of average score given by the CRF model to feature types

mental procedure. This is normal since in the sec-
ond and third steps only compound features corre-
sponding to simple features kept by the first model
are added, with the additional constraint that sim-
ple features must correspond to adjacent positions.
As explained in sub-section 3.1.1, the simple fea-
tures kept at the end of the training are some orders
of magnitude fewer in number than the original
features. This limits tremendously the number of
compound features added in the other steps. Note
also that the results shown in Table 3 are much
better than those shown in (Galliano et al., 2009),
compared with other solutions.

4.1.2 Features relevance

In order to understand features relevance, we re-
port in table 5 feature types ranked by the average
score given by the CRF model. Each type cor-
respond to features at any position with respect
to the target word, with label unigrams and bi-
grams. Unigrams are distinguished from bigrams
using suffixes -1 and -2 respectively. Feature types
wrd are words converted to lower case, Wrd are
words kept with original capitalization. Feature
types Pren are word prefixes of length n, Sufn are
word suffixes of length n. Features extracted from
WMatch output are indexed starting from 1. As
we can see from the table, morpho-syntactic fea-
tures (those marked with POS) receive quite low
scores, especially POS tags. This point validates
our intuition about using POS tags for named en-
tity detection, pointed out in section 3. Note that
feature types correspond to different layers of in-
formation added upon surface level, from less, like
prefixes, to more general, like WMatch semantic
layer. Thus, although some features may have out-
lier scores, the average score is a good indicator of
the relevance of each feature type.
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4.1.3 Models for tree-structured named
entities

In table 4 we report an evaluation of the two
models composing our system. In the first row
we report the SER of the CRF model used in the
system, taking into account only components, i.e.
base entities annotated directly on words. They
can be compared for the test set (TEST) with
the 20% SER of table 3. We go from a SER of
20% to 26.7%, but it is important to note that
the ESTER2 evaluation campaign was performed
using only 17 labels, while 26.7% is obtained
using 196 entity components. We can thus be
satisfied by that result. In order to evaluate the
robustness of the CYK algorithm on our task, we
computed the Node Error Rate (NER in table 4)
on reference components (CYKref.). The CYK
module is applied on the reference components
instead of those output by the CRF model. The
rate of wrong tree nodes with respect to the
reference trees is then computed. The NER being
under 10%, we can assume that the PCFG model
is robust on unseen data. This also confirms
the effectiveness of using components directly,
instead of the lexical surface forms. Finally we
report the results obtained combining the two
approaches (CRF+CYK). Errors of the CYK
algorithm are summed to errors of CRF, thus we
go from a SER of 24.8% and 26.7% on DEV and
TEST (row 1, table 4), to 30.9% and 33.3%.

4.1.4 Official results

We report results of the 2011 Quaero named en-
tity detection evaluation campaign (Galibert et al.,
2011) in table 6, where BN correspond to broad-
cast news, BN to broadcast conversations and Mrg
to the merge of these two types. Our system is in-
dicated as CRF+CYK. The other two participants,
P1 and P2, used a system based on CRF and deep
syntactic analysis, respectively.7

Looking at results we can see that our sys-
tem outperforms the others in all cases by sev-
eral points. Nevertheless error rates are quite high,
over 50% on ASR output. The complexity of the
task must without a doubt be taken into account. It
is indeed the first time that structured named enti-
ties are handled with an automatic detection. Also
the type of data used for the task, i.e. transcrip-

7There are not more details on the other participant’s sys-
tems, since they have not been published yet

Manual ASR1 ASR1+ ASR2 ASR3
BN WER 16.32% 16.32% 18.77% 24.06%

P1 42.7% 55.3% 52.7% 58.5% 61.4%
P2 39.1% 55.6% 54.5% 60.3% 61.8%
CRF+CYK 29.7% 48.5% 53.8% 52.2% 53.5%

CN WER 23.34% 23.34% 22.99% 29.18%
P1 55.3% 87.9% 89.9% 78.3% 89.2%
P2 43.0% 89.3% 83.3% 81.2% 84.1%
CRF+CYK 37.0% 73.9% 79.0% 66.6% 73.0%

Mrg WER 20.96% 20.96% 21.56% 27.44%
P1 48.9% 71.4% 71.1% 68.3% 75.2%
P2 41.0% 72.2% 68.7% 70.7% 72.9%
CRF+CYK 33.3% 61.1% 66.3% 59.3% 63.2%

Table 6: SER results for the 2011 evaluation campaign on broadcast news
(BN), broadcast conversation (BC) and their merge (Mrg) on both manual and
automatic transcriptions

Oracles VS Evaluations DEV TEST
CRF+CYK (SER) 30.9% 33.3%
CRF+CYK (OER) 18.6% 21.1%

Table 7: Comparison of Oracle Error Rate (OER) and SER obtained in
the evaluation for DEV and TEST sets

tions of French broadcast data, contributes to in-
crease the task complexity. Despite these results,
our approach seems promising since it worked far
better than the others in all cases.

We report a comparison of results on manual
transcriptions with Oracle Error Rates (OER), i.e.
results of our system using the best annotation of
CRF among the 10-best hypotheses. This compar-
ison is reported in table 7, and shows that we have
a large margin for improvements on our system.

5 Conclusions

In this paper we proposed a system for structured
named entity detection. We describe the defini-
tion of these structured named entities. The pro-
posed system is based on CRF and syntactic pars-
ing approaches, which combines the effectiveness
and robustness of the former with the capability of
easily and quickly parsing trees of the latter. Addi-
tionally, we proposed an incremental training pro-
cedure for CRF model, which showed to be cor-
rect and effective and allows to train CRF mod-
els with huge number of features. The proposed
system participated in the Quaero evaluation cam-
paign and obtained the best results. Although re-
sults on ASR output are not satisfactory, taking all
results into account the proposed approach seems
promising and encourages further studies.
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