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Abstract

Conditional probabilistic models for word
alignment are popular due to the elegant
way of handling them in the training stage.
However, they have weaknesses such as
garbage collection and scale poorly be-
yond single word based models (DeNero
et al., 2006): not all parameters should ac-
tually be used.

To alleviate the problem, in this paper we
explore regularity terms that penalize the
used parameters. They share the advan-
tages of the standard training in that itera-
tive schemes decompose over the sentence
pairs. We explore the models IBM-1 and
HMM, then generalize to models we term
Bi-word models, where each target word
can be aligned to up to two source words.

We give two optimization strategies for the
arising tasks, using EM and projected gra-
dient descent. While both are well-known,
to our knowledge they have never been
compared experimentally for the task of
word alignment. As a side-effect, we show
that, against common belief, for paramet-
ric HMMs the M-step is not solved by re-
normalizing expectations.

We demonstrate that the regularity terms
improve on the f-measures of the standard
HMMs and that they improve translation
quality.

1 Introduction

State-of-the art approaches for word alignment are
based on probabilistic models. They can be split
into joint models (Melamed, 2000; Marcu and
Wong, 2002) and conditional models (Brown et
al., 1993; Vogel et al., 1996; Wang and Waibel,
1998; Toutanova et al., 2002; Sumita et al., 2004;

Deng and Byrne, 2005; Fraser and Marcu, 2007a).
While in early works the underlying basic entity
was a single word, today’s advanced approaches
build on sequences of words, called phrases.

For joint models the advanced models are stand-
alone approaches (Marcu and Wong, 2002). How-
ever, these models are computationally hard to
handle, which frequently results in maximum ap-
proximations being made. This is different for
the conditional models, which are easier to handle
but where most approaches are based on initializ-
ing from single-word based models (Brown et al.,
1993; Vogel et al., 1996; Al-Onaizan et al., 1999).
However, the recent work of Mauser et al. (2009)
deals with pairs of source words and is trained
without considering single word based models.

In this paper we much generalize on this work,
considering a class of models we term Bi-word
models. We consider a variant of (Mauser et al.,
2009) which we call Bi-1, then proceed to derive
a Bi-HMM. Our main focus is however on regu-
larizing such models. We first address known con-
ditional models called single-word based models,
focusing on a weakness known as garbage collec-
tion. We show that this weakness can be alleviated
by adding an entry to every dictionary distribution
as well as adding a regularity term (a weighted L1

norm). Afterwards we generalize this idea to Bi-
word models. The regularity term will now be-
come crucial since the garbage problem is known
to worsen for conditional models that generalize
single-word based ones (DeNero et al., 2006).

We cast all this as compact objective functions
subject to simplex constraints, and show two ways
to optimize these: via EM and via projected gra-
dient descent (Bertsekas, 1999, chap. 2.1). Since
each iteration decomposes over the sentence pairs,
the approach is efficient and scalable. In contrast
to our recent work (Schoenemann, 2011) (where
we used an L0-norm) we do not use the maximum
approximation and also address Bi-word models.
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Related Work on Word Alignment For a sys-
tematic comparison of the most commonly used
models see (Och and Ney, 2003). Apart from the
classical approaches, a few other lines of work
have been pursued. Indeed, for single word based
models regularity terms have been considered be-
fore, in particular in our recent work on the L0-
norm (Schoenemann, 2011). Otherwise most of
the work has focused on combining asymmetric
conditional approaches. Zens et al. (2004) inter-
twine the training of both directions by exchang-
ing information in-between the iterations. Liang
et al. (2006) propose to include the products of
the conditional marginals for each training direc-
tion into the objective function. Graça et al. (2010)
postulate that the posterior marginals for both di-
rections be equal. They also propose an asymmet-
ric variant that favors 1-to-1 alignments. The idea
of posterior regularization has further been pur-
sued in the machine learning community (Mann
and McCallum, 2007).

We further note the approaches (Matusov et al.,
2004; Taskar et al., 2005; Lacoste-Julien et al.,
2006) that focus on the computation of alignments
given symmetrized cost. Some of them also in-
clude novel ways to train the models.

Finally, our EM-scheme bears resemblance to
the works (Berg-Kirkpatrick et al., 2010; Ganchev
et al., 2010), but we address substantially different
models.

2 Mono-Word Models

In this section we review the employed single
word based models. We call them Mono-word
models as we find the term more handy, in par-
ticular when it comes to distinguishing them from
the pair-based models in the next section.

All discussed models formalize the (condi-
tional) probability that a given English sentence
e = eI1, consisting of I words, produces a foreign
sentence f = fJ1 with J words. This probability
is denoted p(f |e). We will refer to e as the source
sentence and to f as the target sentence. The con-
sidered models are all based on hidden variables
called alignments. For Mono-word models the as-
sumption is that each target word is aligned to at
most one source position. The aligned position of
target word j is denoted aj ∈ {0, . . . , I}, where 0
indicates unaligned words. The alignment of the
entire sentence pair is denoted a = aJ1 and the

probability is modeled as

p(f |e) =
∑

a

p(f ,a|e) .

The models differ in how this new joint probability
is modeled, but they all factor it as

p(f ,a | e) =
∏

j

p(fj | eaj ) · p(aj | aj−1, j, I) .

For the first term (dictionary probability) all mod-
els use the same non-parametric representation.
For the second term (alignment probability) they
differ. The IBM-1 simply sets p(aj |aj−1, j, I) =
1/(I + 1), resulting in a convex model. We
also consider the non-convex HMM, which mod-
els p(aj |aj−1, I), getting rid of the dependence on
j. To avoid overfitting a parametric model is used,
based on considering the difference aj−aj−1. De-
tails are given in the next section.

3 Bi-Word Models

In this paper we consider a more general class of
conditional models, which we call Bi-word mod-
els. Here we are much generalizing on the work of
(Mauser et al., 2009).

Now each target word is allowed to align to
up to two source words. The alignment of tar-
get word j is expressed as the tuple (aj,1, aj,2),
where the allowed set of values is a subset of
{0, . . . , I} × {0, . . . , I}. The value (0, 0) will de-
note unaligned words. In any other case we require
that aj,2 > aj,1. If aj,1 is 0 the word is aligned
only once. If aj,1 > 0 it is aligned twice. We fur-
ther forbid the case where aj,1 > 0 and aj,2 = I
since at the sentence end the considered data usu-
ally contain a punctuation mark which aligns only
once. Note that otherwise there are no restrictions,
in particular we do not require that the two aligned
words are at consecutive positions (although such
knowledge could be enforced in our framework).

In the generative story of the models we first
take a decision of whether the alignment of po-
sition j is a double alignment or not. We de-
note this by a binary variable bj ∈ {0, 1}, where
a value of 1 denotes a Bi-alignment. Obviously
bj = 0 implies aj,1 = 0. Afterwards we decide on
the aligned positions and the identity of the target
word:

p(f ,a|e) =
∏

j

p(fj | eaj,1 , eaj,2) · p(bj) (1)

· p(aj,1, aj,2 | bj , aj−1,1, aj−1,2, I) .
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Note that compared to the Mono-word models we
have now many more dictionary parameters, as
well as much more probability mass to spread.
Moreover, eaj,1 and eaj,2 can be the empty word
NULL.

In this work we consider two models that gen-
eralize the IBM-1 and the HMM to the new set
of alignments. We call them Bi-1 (a variant of
Mauser et al.’s model) and Bi-HMM, and again
they differ only in the alignment probabilities. The
values p(bj=0) and p(bj=1) are chosen indepen-
dently of j and fixed to 0.1 and 0.9 in this work.

The Bi-1 is a convex model and treats non-
Bi-alignments as p(0, aj,2 | bj = 0, I) = 1/(I +
1), just like the IBM-1. For Bi-alignments it
sets p(aj,1, aj,2 | bj = 1, I) = 1/K, where K is
the number of possible Bi-alignments (and where
aj,1, aj,2 is an allowed constellation). Note the
(subtle) difference to the work of Mauser et al.:
this work did not consider the variables bj , so for
long sentences the pairwise alignments become
dominant. Further, for our models the word order
matters, i.e. generally p(f |e1, e2) 6= p(f |e2, e1).

The proposed Bi-HMM factors the alignment
probability in a manner similar to the Mono-
HMM. First of all, for a given alignment we in-
troduce the notion of the head of target position
j, denoted hj . In case the position was aligned at
least once, we define hj as the smallest target po-
sition aligned to j, i.e. hj = aj,1 if aj,1 6= 0 and
hj = aj,2 else. In case of unaligned positions hj
is set to the head of the largest aligned previous
target position. Hence we use a full first-order de-
pendence, which in practice requires doubling the
state space - see (Vogel et al., 1996). The align-
ment probabilities are now

p(0, aj,2 |hj−1, b=0, I) = pinter(aj,2 |hj−1, I)

and for aj,1 > 0

p(aj,1, aj,2|hj−1, b=1, I) = pinter(aj,1 |hj−1, I)
· pintra(aj,2 | aj,1) .

Note that both cases rely on the same probabil-
ity model pinter(·|·). The second case has an ad-
ditional distribution pintra(·|·). Both are mod-
eled separately using a parametric distribution de-
scribed below. Note that pintra(i|i′) = 0 if i ≤ i′.

Superficially the Bi-HMM looks similar to
(Deng and Byrne, 2005). However, this latter is
actually a Mono-word model.

Parametric HMMs. It is well-known that
HMMs for word alignment perform best using
parametric alignment probabilities. For both the
Mono-HMM and the Bi-HMM, we follow Vogel
et al. (1996) and consider only the difference i− i′
to model pinter(i|i′, I). Here, only differences be-
tween −5 and 5 are modeled by separate parame-
ters r−5, . . . , r5, all larger differences are captured
by a single parameter rL. To make this a probabil-
ity distribution, the latter parameter is spread uni-
formly over all possible differences (with absolute
larger than 5) in the respective context. Lastly, we
introduce parameters p0 and p1 (p0+p1=1), where
p0 denotes the probability for unaligned words.
The alignment probability is now

pinter(i | i′, I) =



p0 if i = 0

p1
ri−i′
τi′,I

if i > 0, |i− i′| ≤ 5

p1 · rL
τi′,I |{i′′ : |i′′ − i′| > 5}| else,

with1

τi′,I =
∑

1≤i≤I:|i−i′|≤5
ri−i′ + rL . (2)

A special case arises for the initial alignment prob-
abilities p(h1 = i|I). Rather than fixing them to
1/(2I) (including empty words), as is common,
we model these parametrically (with renormaliza-
tion, but without grouping).

In case of the Bi-HMM, there is further the
probability pintra(·|·), which we also parameterize
based on positive distances, grouping those larger
than 5. In principle, each of the three arising dis-
tributions has its own parameter set. However, the
initial probability and the inter-alignment model
share the parameters p0 and p1.

4 Objective Functions

In word alignment one is given a large set of sen-
tence pairs, not a single pair. We denote the sth
pair by f s, es. The standard approach to word
alignment is maximum likelihood, i.e. minimiz-
ing

−
∑

s

log(p(f s | es))

over the parameters of the model. Here, we are
considering a conditional model, which can be any
of the above mentioned.

1If differences of more than 5 are impossible, the term rL
is dropped from the equation.
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Such models are known to have weaknesses
called garbage collection. This refers to the phe-
nomenon that rarely occurring source words tend
to align to a significant portion of the target words
in the respective sentences, since the probability
mass of the frequent words is better used to ex-
plain the sentences without rare words. The effect
is known to worsen when one moves beyond sin-
gle word based models (DeNero et al., 2006).

It is known that joint models suffer less from
this deficiency when dealing with the same set of
possible alignments. However, joint models are
usually hard to handle computationally, whereas
the mentioned conditional models behave quite
nicely. Hence, we use conditional models, but pro-
pose to alter the training criterion. We add a regu-
larity term that penalizes the used probability mass
in a (non-negative) weighted L1 manner. We state
this for Bi-word models, but note that the Mono-
word models are included by fixing e1 = NULL:

−
∑

s

log(p(f s | es))+
∑

e1,e2,f

wfe1,e2 p(f |e1, e2) (3)

Here we1,e2 ≥ 0 are known weights (see below).
For the new objective to make sense, we need to
augment the parameter space: for every constella-
tion e1, e2, we add a probability p(NULL|e1, e2).
In the standard ML-criterion this entry will always
be set to 0. Not so with our new criterion: since
we set the respective weighting factor wNULLe1,e2 to
0 it may be cheaper not to use the entire mass to
explain the corpus.

Choice of Weights. When dealing with Mono-
word models we only penalize rare words since
they cause the garbage collection phenomenon.
Let N(e) be the number of times the source word
e occurs in the corpus. If N(e) ≥ 6 we set w∗0,e
to 0, otherwise it is set to λ[6−N(e)], where λ is
some weight. We found λ = 2.5 to work well.

For Bi-word models we presently set all Mono-
word weights w∗0,∗ to 0. The Bi-word penalties
are based on a value of λ = 0.5, but rare source
word pairs pay a larger penalty (The equation is
λ ·max{1, 5−N(e1, e2)}, where N(e1, e2) is the
number of times the pair e1, e2 occurred).

5 Optimization Strategies

We present two optimization schemes to handle
the arising minimization problems: one is based
on Expectation Maximization (EM), the other on
projected gradient descent (PGD). To make the

paper self-contained, we include a sketch of the
relevant equations, noting that they are probably
known in other contexts. We detail the scheme on
the Bi-word models, the Mono-word models can
be handled analogously.

Constraints First of all we note that we are
dealing with a constrained optimization problem,
since the objective (3) is minimized over the pa-
rameters of probability distributions. For the dic-
tionary parameters we have positivity constraints
and normalization constraints:

p(f |e1, e2) ≥ 0 ∀f, e1, e2 ,

∑

f

p(f |e1, e2) = 1 ∀e1, e2 .

This is known as a product of simplices, a rela-
tively easy constraint system. For the Bi-1 there
are no more parameters to optimize.

For the Bi-HMM (and also the Mono-HMM)
there are the parameters r−5, . . . r5 and rL of the
inter-alignment model. Each one comes with a
positivity constraint. Moreover, these parame-
ters are determined only up to scale, so we in-
troduce the simplex constraint that they sum to 1:∑5

k=−5 rk + rL = 1. The same principle applies
to the parameters of the initial probability and of
pintra(·|·).

5.1 Projected Gradient Descent

We first present a solution based on projected gra-
dient descent (PGD) (Bertsekas, 1999, chap. 2),
which is applicable since our constraint set is con-
vex. Even though EM is usually the better suited
method, we recommend reading this section as
some auxiliary problems of EM are optimized by
a very similar method.

PGD is similar to unconstrained gradient de-
scent: one iteratively computes the gradient of the
objective and takes a step in this direction. In gen-
eral one will leave the feasible region, so one takes
the closest feasible point instead. This operation is
called projection. In our case we use the method
of (Michelot, 1986). Finally, this point can have a
higher energy than the previous, but the direction
between the two points is a descent direction. We
do a backtracking line-search to find a step in this
direction that gives a sufficient decrease in the ob-
jective value. For the convex Bi-1 model this will
eventually reach the global optimum, for the Bi-
HMM a local optimum (as is standard for HMMs).
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Obviously, the gradient of the regularity term
(w.r.t. the dictionary parameters) is the weight
vector with entries wfe1,e2 . Further, the gradient of
the standard maximum likelihood term is additive
over the sentences. Hence, in the following we
only state the gradients of a single sentence pair,
i.e. ∂

∂θ − log(p(f s|es)), where θ is either a dictio-
nary or an alignment parameter.

All considered models are so-called multino-
mial distributions. As shown in the appendix, for
such distributions the gradient w.r.t. the dictionary
parameters is given by

∂

∂p(f |e1, e2)
− log(p(f s|es)) (4)

= −

∑
a
ka(f, e1, e2) p(a|f s, es)

p(f |e1, e2)
where ka(f, e1, e2) is the number of times f aligns
to both e1 and e2 in the alignment a and for the
considered sentence pair. Note that the numera-
tor of the ratio is the expectation of f aligning to
e1 and e2 in the given sentence pair. This expres-
sion is also a fundamental building block of stan-
dard EM. For the Mono-1 and Bi-1 this is simply
a sum over the source positions j. For the Mono-
and Bi-HMM it can be calculated by the forward-
backward algorithm (Baum et al., 1970).

With a similar argument one can derive the par-
tial derivatives of the alignment parameters. We
exemplarily detail this for pinter. Let θ denote any
of the parameters p0, p1, r−5, . . . , r5 and rL. Then
one can show that

∂

∂θ
− log(p(f s|es)) (5)

= −
∑

i,i′

∑
a
ka(i|i′, Is) p(a|f s, es)

p(i|i′, Is)
· ∂p(i|i

′, Is)
∂θ

,

where ka(i|i′) denotes the number of times a
source word is aligned to position i when the head
of the previous source word was i′.

It remains to derive the partial derivatives of
p(i|i′, Is) w.r.t. the alignment parameters. For p0
and p1 this is straightforward. For a regular count
rk with |k| ≤ 5 we have

∂

∂rk
p(i|i′, I) =





p1
τi′,I − rk
τ2i′,I

if k = i− i′

p1
−ri−i′
τ2i′,I

if |i− i′| ≤ 5

p1
−rL

τ2i′,I · nLi′,I
else ,

where τi′,I is as in (2). The derivative w.r.t. rL is

∂

∂rL
p(i|i′, I) =





p1
τi′,I − rL
τ2i′,I · nLi′,I

if |i− i′| > 5

p1
−ri−i′

τ2i′,I · nLi′,I
else ,

with nLi′,I = |{i′′ : 1 ≤ i′′ ≤ I, |i′′ − i′| > 5}|.

5.2 Expectation Maximization

A very commonly used method for word align-
ment is expectation maximization (Neal and Hin-
ton, 1998). We give a modified version that han-
dles our new objective function. Note that mod-
ifications of EM have been derived before, e.g.
(Ganchev et al., 2010).

Traditionally, EM is used for standard maxi-
mum likelihood optimization. Denoting the pa-
rameters of the model as θ, the respective mini-
mization problem would be

min
θ

S∑

s=1

− log(p(fs|es,θ)) .

The function to be minimized is called negative
log-likelihood. It follows from (Neal and Hinton,
1998) that the function

F (θ, θ̃) =
S∑

s=1

∑

as

− p(as|fs, es, θ̃)
[
log(p(fs,as|es,θ))

− log(p(as|fs, es, θ̃))
]

is an upper bound on the negative log-likelihood
function, independent of the choice of θ̃. In fact,
F (θ,θ) is exactly the negative log-likelihood for
θ. As a consequence,

F (θ, θ̃) +
∑

e1,e2

∑

f

wfe1,e2 p(f |e1, e2) (6)

upper bounds our new objective (3) - note that
all p(f |e1, e2) are entries in the vector θ. As in
standard EM, we now perform coordinate descent
on this new function: we iteratively update θ̃ to
the vector that minimizes the objective for fixed
θ. The optimal value is given as the expectation
of alignments given θ (Neal and Hinton, 1998),
which is why this term is generally called E-step.
The respective calculations in our case are exactly
as the ones performed in gradient descent.

The second step in each iteration is called M-
step and consists of setting θ to the optimal value
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for the given θ̃ and hence the given coefficients
p(as | fs, es, θ̃). While for simple models there is
often an analytic solution, in our case we are not
aware of one for any of the parameters (except for
special cases, e.g. when all wfe1,e2 are 0). Note,
that this implies that the popular toolkit GIZA++
is not doing the M-step correctly: when apply-
ing the equations derived below, we verified that
renormalizing expectations does not minimize the
M-step energy. Moreover, with the common pro-
cedure the total energy usually only decreases in
the first few iterations, after that it often increases.

The arising M-step decomposes into several in-
dependent optimization problems. In particular,
there is a separate problem for each e1, e2 to up-
date the respective dictionary distribution. The
function to be minimized is
∑

f

[
wfe1,e2p(f |e1, e2)− cfe1,e2 log(p(f |e1, e2))

]
,

where the weights cf,e1,e2 are the expectations (un-
der the previous θ) of f aligning to e1 and e2. We
solve this via gradient descent with the gradient

∂

∂p(f |e1, e2)
=
∑

f

[
wfe1,e2 −

cfe1,e2
p(f |e1, e2)

]
,

In special cases more efficient schemes are ap-
plicable. In particular it is well-known that if
wfe1,e2 = 0 for all f the optimal solution is given
by re-normalizing the coefficients cfe1,e2 . If wfe1,e2
is constant for all f 6= NULL, then in prin-
ciple one only has to determine the probability
p(NULL|e1, e2). The remaining mass can again
be spread according to normalized coefficients.

For the alignment parameters, we again only
discuss pinter(·|·), where the auxiliary energy is

∑

I

I∑

i,i′=1

−cIi,i′ log(p(i|i′, I)) ,

and the gradient for an alignment parameter θ

∂

∂θ
=

I∑

i,i′=1

−
cIi,i′

p(i|i′, I)
∂p(i|i′, I)

∂θ
.

The inner derivatives were given in section 5.1.
The parameters p0 and p1 are very simple to de-
rive.

6 Experiments

We report results on three different data sets, in
both directions each. The first two are Europarl
sets (in the original casing), where we consider

EP De-En EP Es-En Hs. Fr-En
#sentences
(large task)

500K 500K 1M

#sentences
(small task)

15K 15K 25K

sent. length 80 75 40

Table 1: Statistics of the considered tasks. Es =
Spanish, De = German, Fr = French, En = English,
Hs. = Canadian Hansards, EP = Europarl. “K”
denotes a thousand, “M” a million.

English-German2 and English-Spanish3. Further,
we consider the well-known Canadian Hansards
task (French-English, lowercased). In all cases
we report weighted f-measures (Fraser and Marcu,
2007b) on the publicly available gold alignments.
We use a weighting factor of α = 0.1, which per-
formed well in Fraser and Marcu’s work.

For the Mono-word models we consider large
scale tasks with at least 500000 sentence pairs. For
the Bi-word models the demand on computational
resources is much higher, so we use tasks with
15000 to 25000 sentence pairs. We also evaluate
the Mono-word models here, showing that the reg-
ularity term becomes more important in the case of
scarce training data.

The most important statistics of all tasks are
listed in Table 1. The methods required no more
than 4 GB memory on these tasks. The running
times on the large scale tasks sometimes slightly
exceeded a day. For the small scale tasks even the
Bi-word models need less than 12 hours. Without
regularity, EM is clearly faster. But with regularity
terms, EM and PGD are roughly equal in speed. In
general, PGD finds a slightly higher energy than
EM.

6.1 Comparison of Models

In this paper we have introduced new objective
functions and argued that they alleviate some of
the deficiencies of standard maximum likelihood
for conditional models. As a consequence, we
are interested in comparing models and objective
functions, and not so much in getting the last bit
of practical performance (f-measure).

Hence, when comparing4 to GIZA++ we turn

2Gold alignments available at
http://www.maths.lth.se/matematiklth/
personal/tosch/download.html.

3Gold alignments from (Lambert et al., 2005).
4It is common to run GIZA++ with smoothing and only

5 iterations. Indeed, this improves the f-measures. However,
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EUParl Es-En 500K EUParl De-En 500K CHans Fr-En 1M
Es|En En|Es De|En En|De Fr|En En|Fr

IBM-1, EM, no reg. 64.0 64.6 68.5 71.5 82.7 83.3
IBM-1, EM, with reg. 64.5 64.9 68.6 72.0 83.1 83.5
IBM-1, PGD, no reg. 63.5 63.6 67.0 71.0 82.6 82.3
IBM-1, PGD, with reg. 63.8 64.1 66.9 71.8 83.3 81.8
HMM, EM (GIZA++) 75.0 74.2 72.5 75.3 91.4 90.8
HMM, EM (our), no reg. 77.4 76.1 73.2 77.8 89.6 90.3
HMM, EM (our), with reg. 77.7 76.3 73.1 78.2 90.3 90.6
HMM, PGD, no reg. 75.3 73.5 70.9 75.3 89.2 88.8
HMM, PGD, with reg. 74.9 73.8 72.2 75.7 89.3 88.7
IBM-4 (GIZA++) 79.6 80.0 76.8 80.5 92.3 93.2

Table 2: F-measures (×100) for the large-scale tasks.

off smoothing. Also, we run more iterations than
usual: for all methods (GIZA++, EM, PGD) we
run 30 iterations of IBM-1, followed by 50 for the
HMM. Here we use the same regularity terms for
both models. For reference, we also evaluate the
IBM-4 as implemented in GIZA++ (starting from
the 50 HMM iterations, then doing 5 iterations of
IBM-3 and 5 iterations of IBM-4).

For the Bi-word models we initialize the non-
convex Bi-HMM by running the Bi-1 first (with
the same regularity term, if any). The number of
iterations is the same as for the respective Mono-
word models.

Large Scale Tasks. In Table 2 we show the
resulting f-measures on the large scale tasks
for all mentioned strategies, including GIZA++’s
HMM and IBM-4. Often our HMM outperforms
GIZA++ (without smoothing), which may be due
to the more precise M-step. Moreover, the regu-
larity terms usually improve the results, where the
effect is generally stronger the higher inflected the
source language is. Still, the IBM-4 performs best
everywhere, so in future work we will transfer our
new objective to this model.

Small Scale Tasks. The results for the small
tasks are given in Table 3. Here it can be seen
that adding the regularity to the Mono-word mod-
els greatly improves on the f-measures of the base-
line HMM and sometimes gets close to the IBM-4.
For the Bi-word models the regularity terms also
help greatly, and in the majority of cases beat the
baseline Mono-HMM (without regularity).

Like for the large scale tasks, EM performs bet-

with the new objective function we also get better results for
less iterations. A systematic comparison of this is left for
future work.

Method BLEU TER
our HMM, no reg. 27.94 56.98
our HMM, with reg. 28.33 56.20
GIZA++, HMM 28.04 56.83
GIZA++, IBM-4 28.71 56.15

Table 4: Evaluation of the translation quality for
the large scale German→ English task.

Method BLEU TER
our HMM, no reg. 21.50 63.44
our HMM, with reg. 21.77 62.97
GIZA++, HMM 21.90 63.34
GIZA++, IBM-4 22.24 62.81
Bi-HMM, no reg. 21.78 63.58
Bi-HMM, with reg. 21.70 63.38

Table 5: Evaluation of the translation quality for
the small scale German→ English task.

ter than PGD and the corrected M-steps often beat
GIZA++.

6.2 Effect on Phrase-based Translation
We give a first evaluation of the effect of our align-
ments on phrase-based translation, where we ran
MOSES with a 5-gram language model. We ran-
domly picked translation from German to English
with 750 unseen development and 3000 unseen
test sentences.

As shown in the tables 4 and 5 the regularity
terms do improve translation for Mono-word mod-
els. The Bi-word models are presently not com-
petetive. Here we are showing the BLEU accuracy
measure and the Translation Edit Rate (TER).

7 Conclusion

This paper has introduced the idea of regulariz-
ing the mass of the probability parameters that is
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EUParl Es-En 15K EUParl De-En 15K CHans Fr-En 25K
Es|En En|Es De|En En|De Fr|En En|Fr

IBM-1, EM, no reg. 54.5 56.0 59.0 63.6 77.1 79.2
IBM-1, EM, with reg. 56.0 57.2 60.4 64.5 78.7 79.5
IBM-1, PGD, no reg. 50.6 56.0 59.2 63.1 76.6 79.3
IBM-1, PGD, with reg. 55.8 56.9 60.0 63.5 78.0 79.4
HMM, EM, (GIZA++) 68.0 66.9 65.7 67.9 82.8 84.9
HMM, EM, (our), no reg. 69.3 68.9 65.0 70.2 80.9 86.9
HMM, EM, (our), with reg. 72.2 72.0 68.0 71.8 83.5 87.7
HMM, PGD, no reg. 68.0 68.9 57.9 68.7 79.3 85.6
HMM, PGD, with reg. 68.0 71.0 61.0 69.4 82.1 86.1
IBM-4 (GIZA++) 72.5 72.3 76.8 73.0 86.4 89.0
Bi-1, EM, no reg. 52.0 54.7 57.8 63.8 74.2 77.3
Bi-1, EM, with reg. 54.2 55.8 59.3 64.3 76.8 78.8
Bi-1, PGD, no reg. 52.8 55.2 58.0 64.0 75.0 77.8
Bi-1, PGD, with reg. 53.7 56.0 59.1 63.8 75.7 77.8
Bi-HMM, EM, no reg. 66.2 68.5 64.4 67.2 79.6 82.2
Bi-HMM, EM, with reg. 70.8 71.2 66.0 70.8 80.5 86.8
Bi-HMM, PGD, no reg. 68.4 68.2 71.5 68.0 78.2 84.3
Bi-HMM, PGD, with reg. 69.8 71.2 63.5 68.1 78.4 84.1

Table 3: Resulting F-measures (×100) for the small scale tasks.

used to explain the data. We have argued that
these terms reduce overfitting and demonstrated
experimentally that the introduced objectives im-
prove the f-measures of the generated alignments.
We often beat the baseline HMM, and transferring
our objective to the IBM-4 would probably beat a
baseline IBM-4.

Our comparison of projected gradient descent
(PGD) and expectation maximization (EM) re-
vealed that EM leads to better alignments, al-
though PGD finds a comparable but slightly higher
objective value. We also showed that parametric
HMMs induce non-trivial M-steps.

In future work we want to address IBM-3 and
IBM-4 and explore the effect on phrase-based
translation in greater detail.

To facilitate further research in this area,
the source code associated to this work is in-
tegrated into a tool called RegAligner, pub-
licly available at the author’s homepage and at
https://github.com/Thomas1205/RegAligner.
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Appendix

We now derive the partial derivative of the
negative log-likelihood of a general (multino-
mial) probability w.r.t. a dictionary parameter
p(f |e1, e2). This derivation is probably not novel,
but included here for completeness. The partial
derivative is given by

∂

∂p(f |e1, e2)
− log(p(f s|es)) =

− 1

p(f s|es) ·
[∑

as

∂

∂p(f |e1, e2)
p(f s,as|es)

]
.

Now take a fixed a, and denote ka ∈ N0 the num-
ber of times the factor p(f |e1, e2) is used in its
probability, i.e.

p(f s,a|es) = ca · p(f |e1, e2)ka ,

where ca is constant w.r.t. p(f |e1, e2). Clearly

∂p(f s,a|es)
∂p(f |e1, e2)

= ca · ka · p(f |e1, e2)ka−1

= ka
p(f s,a|es)
p(f |e1, e2)

.

This is how the claimed formula arises, i.e. the
entire derivative is

−

∑
a
ka p(a|f s, es)

p(f |e1, e2)
.
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