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Abstract 

Incorporating semantic information in the 
Statistical Machine Translation (SMT) 
framework is starting to gain some populari-
ty in both the semantics and translation 
communities. In this paper, we present en-
couraging results obtained from experi-
ments conducted on English to Arabic SMT 
system using static, dynamic, and hybrid in-
tegration of fine-grained Multiword Expres-
sion (MWE). We achieve an improvement 
up to 0.82 absolute BLEU score by integrat-
ing MWEs over a vanilla SMT system. We 
empirically show that different MWE types 
require different integration methods in the 
SMT framework. 

1 Introduction 
Multiword expressions (MWEs) are roughly de-
fined by (Sag et al., 2002) as “idiosyncratic con-
cepts that cross word boundaries (spaces).” 
MWEs are widely used, 41% of the entries in 
WordNet 1.7 (Fellbaum, 1998) are MWEs, but 
unfortunately they have proved to be hard to 
model in natural language processing applica-
tions. Typical statistical machine translation 
(SMT) systems, in particular, do not explicitly 
model MWEs. This might indicate that state of 
the art SMT systems are doing well without hav-
ing any knowledge of whether a given phrase is a 
multiword expression or not. However, recent 
research (Carpuat and Diab 2010, Bouamor et 
al., 2012) show that explicitly modeling MWEs 
in the SMT framework yields non-negligible 
gains depending on the integration method. 

In this paper we study explicit modeling of the 
diverse kinds of MWEs in a phrase-based SMT 
framework for the English-Arabic language pair. 
This paper is organized as follows: section 2 
overviews the different types of MWEs, section 

3 reviews the previous work related to MWEs 
and SMT. Section 4 details our approach fol-
lowed by the results in section 5. Our discussion 
of the results is presented in section 6 and finally 
the conclusions are in section 7. 

2 Multiword Expressions Classification 
According to (Sag et al., 2002), MWEs are 
broadly classified into institutionalized phrases 
and lexicalized phrases based on the varying de-
gree of lexical rigidity and semantic composi-
tionality. 

Institutionalized phrases are conventional-
ized phrases that are syntactically and semanti-
cally compositional, but statistically 
idiosyncratic (e.g. “traffic light”, “to kindle ex-
citement”.) 

Lexicalized phrases have at least in part idio-
syncratic syntax or semantics. They can be fur-
ther broken down into: 

(a) Fixed expressions which undergo neither 
morphosyntactic variation, nor internal modifica-
tion (e.g. “by and large”, “every which way”) 
[AV, AJ], 

(b) Semi-fixed expressions such as (1) non-
decomposable idioms (e.g. “kick the bucket”) 
[VNC], (2) compound nominal (e.g. “car park”, 
“part of speech”) [NNC], and (3) proper names 
and named entities (e.g. “New York”) [NE]. 

(c) Syntactically-flexible expressions such as 
(1) verb particle construction (e.g. “write up”, 
“look up”) [VPC], (2) light verb constructions 
(e.g. “make a decision”) [LVC], and (3) decom-
posable idioms (e.g. “sweep under the rug”) 
[VNC]. 

3 Related Work 
Previous work has focused on automatically 
learning and integrating translations of very spe-
cific MWE categories, such as, for instance, idi-
omatic Chinese four character expressions (Bai 
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et al., 2009.) MWEs have also been defined not 
from a lexical semantics perspective but from a 
SMT error reduction perspective, as phrases that 
are hard to align during SMT training (Lambert 
and Banchs, 2005). For each of these particular 
cases, translation quality improved by augment-
ing the SMT translation lexicon with the learned 
bilingual MWEs either directly or through im-
proved word alignments.  

Ren et al. (2009) described a method integrat-
ing an in-domain bilingual MWE to Moses by 
introducing an additional feature that identifies 
whether or not a bilingual phrase contains bilin-
gual MWEs. This approach was generalized in 
Carpuat and Diab (2010) who replaced the binary 
feature by a count feature representing the num-
ber of MWEs in the source language phrase. 
They present results on a large data set of Eng-
lish to Arabic SMT. They introduce two ways of 
integrating MWE knowledge in the SMT frame-
work: Static and Dynamic integration. For Static 
integration, MWE tokens in the source data are 
grouped together with an underscore. While in 
Dynamic integration, the MWEs are identified in 
the phrase table and an additional weighted fea-
ture, as a soft constraint, is added to the phrase 
translation table. Carpuat and Diab (2010) focus 
only on MWEs as identified in WordNet 
(Fellbaum, 1998) with no explicit distinction be-
tween the different types of MWEs. Accordingly, 
the MWEs are considered a single type with no 
attention to various POS information. Our work 
here is taking a much fine grained approach and 
deeper study and analysis. 

4 Approach  
We adopt a Phrase-based SMT framework, Mo-
ses (Koehn et al., 2007). In the following subsec-
tions, we address the issue of representation of 
MWE in our SMT pipeline and then we investi-
gate the manner in which the MWE information 
is integrated in the SMT framework.  

4.1 Data Sets 
For training the translation models, we use LDC 
GALE newswire parallel Arabic-English corpus 
(LDC2007E103) (a total of 474299 sentence 
pairs / about 10M un-tokenized words / 12M to-
kenized words). The Log-Linear model features 
weights are tuned using the newswire part of 
NIST MT06 (765 sentence pairs) as the tuning 
dataset and BLEU (Papineni et al., 2002) as the 
objective function. For training the language 
model (LM), we use the LDC Arabic 

GIGAWORD 4th edition (LDC2009T30) (about 
850M un-tokenized words). 

We use the newswire part of NIST-MT04 (707 
sentences) as our development test-set to com-
pare performance and select combinations of dif-
ferent conditions. We report results using two 
blind test-sets; NIST-MT05 (1056 sentences) and 
the newswire part of NIST-MT08 (813 sentenc-
es). These standard test sets are originally de-
signed to test Arabic to English translation 
systems thus it consists of one Arabic source set 
and four English human reference translation 
sets. To use these test sets for testing English to 
Arabic translation systems, we created new test 
sets where the source set is constructed by con-
catenating the four English human translations of 
the original standard test set, and the reference 
set is constructed by duplicating the original 
standard test set Arabic source four times. This 
means that the new test sets have four times the 
number of sentences of the original standard test 
sets. Increasing the test set size enhances the reli-
ability of the evaluation scores as reported by 
(Zhang and Vogel 2010). 

4.2 MWEs lists 
We need a mechanism by which to identify 
MWE in the source English text. We rely on two 
identification sources depending on the type of 
MWE: an MWE list extracted from a wide cov-
erage lexical database and a named entity recog-
nition tool. As mentioned earlier in section 2, we 
consider several types of MWEs for this study: 
Verb-based MWEs (VNC, VPC, and LVC), 
Noun-based MWEs (NNC, and NE), Adjective 
(AJ) and Adverb (AV) based MWE.  

WordNet Extracted MWEs Lists: 

For the VPC, VNC, LVC, NNC and AJ and AV 
categories of MWE, we extract an extensive list 
from the wide coverage English WordNet data-
base 3.0. (Fellbaum,1998). Table 1 shows the 
number of MWEs extracted from WordNet 3.0 
dictionaries. It is worth noting that the MWE.V 
list comprises all three types of verbal MWEs 
(VNC, VPC, LVC), moreover the MWE.N in-
cludes NNC and some NEs as listed in WordNet.  
 

MWE list # MWE types 

MWE.V 3,089 

MWE.N 62,244 

MWE.AJ 3,358 

MWE.AV 826 

Table 1: WordNet 3.0 based MWE statistics 
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Named Entities Tagging: 

We consider Named Entities (NEs) as another 
type of MWE. To construct our NEs list, we ex-
ploit a named entity tagger, the Stanford NER 
[SNER] (Finkel et al., 2005). SNER tags named 
entities in a given English text into three catego-
ries: 1) Person 2) Organization and 3) Location. 
We are interested in Multiword NEs only and 
pay no attention to the different NE categories. 
The extracted NEs list consists of the 65616 
Multiword NEs tagged by SNER in our training 
corpus. 

There are some overlaps between the NEs list 
and the MWE lists extracted from WordNet as 
shown in table 2. The large overlap is between 
the NEs list and the MWE.N, which contains 
NEs as listed in WordNet 3.0.  

 
 MWE.N MWE.AJ MWE.AV 

# types 1216 24 5 

E
x
a
m
p
le
s
 

abraham lincoln 

abu dhabi 

abu sayyaf 

adam smith 

addis ababa 

adriatic sea 

african american 

anti american 

central american 

costa rican 

east african 

eastern orthodox 

north east 

north northeast 

north west 

south east 

south west 

Table 2: Overlaps between the WordNet MWEs lists 
and the NEs list 

Matching Algorithm: 

In order to identify the MWE in the source Eng-
lish side of the parallel data, we use a Maximum 
Forward Matching algorithm that finds the long-
est matching MWE in the text. The algorithm 
matches over the tokenized version of the data 
and if no match, it backs-off to the lemmatized 
version to account for the different inflectional 
forms of the MWE (e.g. “take place” and “took 
place”.) Our current matching algorithm doesn’t 
handle gap flexibility like in the phrasal verbs 
MWEs (i.e. “break up” is handled while “break it 
up” is not.) 

4.3 SMT System 

Data preprocessing and models generation: 

The Arabic side of the train, tune, development 
and test data sets and the language model train-
ing data sets are tokenized using AMIRA 2.1 
toolkit (Diab 2009, Diab et al., 2007) into the 
Arabic TreeBank tokenization scheme. The Ara-
bic side of the training data is further processed 
to generate a lemmatized version used in the 
alignment stage of the SMT pipeline. We use the 
undiacritized version (both tokenized and lem-
matized) in all our experiments. 

The English side is tokenized using Tree Tag-
ger (Schmid, 1994). It is then tagged using the 
selected MWE list according to the condition 
under investigation. The English lemmatized 
version of the training data is also generated for 
use in alignment. 

We used SRILM toolkit (Stolcke, 2002) to 
create a 5-gram Arabic LM modified using 
Kneser-Ney smoothing. 

In all our experimental conditions, the parallel 
corpus is word-aligned using GIZA++ in both 
translation directions using the lemmatized ver-
sion of both sides to decreases data sparseness, 
and phrase translations of up to 10 words are ex-
tracted from the tokenized version of both sides 
using the grow-diag-final-and heuristic (Koehn et 
al., 2007). 

We optimized log-linear model feature 
weights using Minimum Error Rate Training 
(MERT) (Och, 2003). To account for the insta-
bility of MERT, we run the tuning step three 
times per condition with different random seeds 
and use the optimized weights that give the me-
dian score. 

Integration Methods: 

(a) Static Integration (S) 
In Static integration of MWEs in SMT, MWEs in 
English training, tuning and testing data are un-
derscored as a preprocessing step based on a pat-
tern match to the WN list entries and NER 
results. Hence static integration is a manipulation 
on the data representation, the SMT system is 
kept intact.  

(b) Dynamic Integration (D) 
Dynamic integration is a soft constraint strategy 
that adds a new feature into the log linear model 
of phrase-based SMT. It is a count feature indi-
cating the number of MWEs in the English 
phrase in the phrase table, thereby biasing the 
system, at decoding time, towards using phrases 
that do not break MWEs. The training, tuning, 
development and test data do not undergo any 
MWEs annotation (no underscoring).  

(c) Zone Integration (Z) 
We define constrained reordering zones for all 
MWEs found in the test data and the decoder is 
forced to respect these boundaries while con-
structing the translation hypothesis. This is easily 
represented using XML tags in the system input 
to Moses decoder (Koehn and Haddow, 2009). It 
is worth noting that words within a zone are not 
necessarily translated as a single phrase and can 
be reordered; input phrases that cross zone 
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boundaries can be used in translation hypotheses 
without breaking the reordering constraint. 

(d) Hybrid Integration 
Motivated by the development-set results of the 
previous integration methods and MWEs 
schemes, we carried out a set of experiments in-
vestigating combining the best performing condi-
tions. 

MWEs Schemes: 

We created 7 MWEs schemes combining the 
various types of WordNet-based MWE lists and 
NEs list. They are listed in Table 3, along with 
the number of types and tokens of MWEs found 
in the training data according to each of the 
MWE Schemes.  
We combine MWEs schemes and integration 
methods to get the different experimental condi-
tions listed in Table 4. Here is some example 
input preprocessing for the same sentence ac-
cording to different conditions: 
-Baseline (and all dynamic integration): 

invading iraqis kurdistan is no longer an easy task . 

-S_VAA1: 

invading iraqis kurdistan is no_longer an easy task . 

-S_NN: 

invading iraqis_kurdistan is no longer an easy task . 

-Z_VAA+NN: 

invading <zone> iraqis kurdistan </zone> is <zone> 
no longer </zone> an easy task . 

5 Evaluation Results 
We used four standard MT metrics2; BLEU 
(Papineni et al., 2002), NIST (Doddington, 
2002), METEOR3 (Banerjee and Lavie, 2005), 
and TER (Snover et al., 2006), to report and 
compare performance of different experimental 
conditions. Table 4, summarizes the results. 

The results show that, for the three integration 
methods (S, D and Z), the only conditions that 
help across all test-sets are S_VAA and D_VAA. 
S_VAA gives the best results except for 
METEOR where D_NN and D_NE are outper-
forming S_VAA.  
                                                           
1 We use the convention: IntegrationMethod_MWEScheme 
[-IntegrationMethod_MWEScheme]* to label different con-
ditions: e.g “S_VAA-D_NE+NN” refers to a hybrid integra-
tion where the “VAA” MWEs are statically integrated and 
the “NE+NN” MWEs are dynamically integrated. 
2 We report case-sensitive scores as our system output is in 
Buckwalter transliteration. 
3 For METEOR scores, we used “exact” module only. 

We want to investigate which part of the SMT 
pipeline does S_VAA condition help, so we car-
ried another experiment (A_VAA) where the 
VAA is used in the alignment stage of the pipe-
line only. We simply removed underscores from 
the input phrases in the phrase table and the lexi-
cal reordering table and used the new tables as 
A_VAA tables. The tune and test data-sets are 
the same as the normal baseline (no underscor-
ing). The results show that the major part of the 
S_VAA configuration enhancement is actually 
coming from the alignment stage. 

Motivated by the development set results of 
S_VAA, A_VAA and the enhancement of 
METEOR scores by D_NN and D_NE, we car-
ried out a couple of experiments investigating 
hybrids of the integration methods. 

S_VAA-*: In these configurations we use stat-
ic integration for VAA and dynamic integration 
for NE and/or NN. For example, for S_VAA-
D_NE the input phrases in the phrase table have 
VAA MWEs underscored and the probabilities 
have the added extra feature counting NEs in the 
input phrase. The train, tune and test data for this 
configuration has VAA MWEs underscored. 

A_VAA-*: In these configurations we use the 
phrase tables of the S_VAA and remove under-
scores from the input phrases. We then add the 
extra feature indicating the counts of the NE 
and/or NN MWEs found in the input phrase. 

 Table 4 shows that A_VAA-D_NE+NN gives 
the best overall consistent performance with ab-
solute BLEU score improvement of 0.63 for 
MT04-NW, 0.82 for MT05 and 0.45 for MT08-
NW. 

6 Discussion  
Static integration mainly helps when the MWE is 
a fixed expression (AV, AJ) that needs to be 
translated as a whole non-compositionally. 
That’s why we see the VAA condition (more 
than half of its list is fixed MWEs) giving the 
best results. Static integration also helps for 
semi-fixed expressions (VNC, NNC and NEs) 
conditioned by having enough training samples 
otherwise we increase OOV. If we look at table 
3, we can see that the average number of tokens 
per type for all NE conditions is very low. This is 
mainly due to the huge number of NE types. 
That’s why NEs schemes do not show any im-
provement using static integration. On the other 
hand, S_NN shows some inconsistent improve-
ments depending on the data sparsity. For exam-
ple, in our sample test sentence, S_NN condition 
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created the new token “iraqis_kurdistan” which is 
not in the training data. 

Dynamic integration helps solving this data 
sparsity issue by introducing a new feature that is 
weighted globally using all evidences belonging 

to the same category to favor phrase pairs with 
unbroken MWE of that category. That’s why we 
see some improvements for NEs and NNs in ad-
dition to VAA. 
 

 
MWE Scheme MWE List #Lemma Types # Token Types # Tokens (Tokens/ 

Types) 
NN MWE.N 8,075 10,503 329,116 31.33 
VAA MWE.V, MWE.AJ ,   MWE.AV 3,003 5,733 184,899 32.25 
VAA+NN VAA, MWE.N 10,698 15,571 494,528 31.76 
NE  NE 65,634 65,616 290,564 4.43 
NE +NN MWE.N, NE 72,308 74,674 502,782 6.73 
NE+VAA VAA, NE 68,600 71,308 472,718 6.63 
NE+VAA+NN VAA+NN, NE 74,915 79,728 667,686 8.37 

Table 3. MWEs Schemes Statistics 
 

Experiments 
Development Set 

MT04-NW 
Blind Test Set 

MT05 
Blind Test Set 

MT08-NW 
BLEU NIST MET TER BLEU NIST MET TER BLEU NIST MET TER 

Baseline 41.28 8.24 59.58 44.43 38.65 8.17 56.60 47.49 33.82 7.45 53.51 53.84 

S_NE 37.54 7.57 56.59 46.99 35.86 7.56 54.08 49.67 31.57 7.00 51.64 55.49 

S_NE+NN 36.67 7.39 56.82 48.23 35.05 7.39 54.49 50.78 30.37 6.79 51.66 57.23 

S_NE+VAA 37.90 7.62 56.48 46.41 36.31 7.61 54.05 49.02 32.10 7.07 51.69 54.51 

S_NE+VAA+NN 37.85 7.57 56.49 46.81 35.80 7.55 53.89 49.59 31.28 6.96 51.32 55.62 

S_NN 40.87 8.12 59.74 45.13 38.90 8.11 57.07 47.82 33.26 7.33 53.59 54.71 

S_VAA 41.82 8.30 59.77 44.01 39.47 8.27 57.14 46.71 33.99 7.51 53.76 53.28 

S_VAA+NN 41.16 8.17 59.69 44.56 38.94 8.12 56.98 47.42 33.12 7.33 53.45 54.44 

D_NE 41.07 8.16 60.05 44.74 38.89 8.12 57.18 47.57 33.33 7.36 53.85 54.34 

D_NE+NN 40.86 8.16 59.69 44.78 38.74 8.11 56.94 47.63 33.56 7.38 53.72 54.18 

D_NE+VAA 40.80 8.15 59.56 44.91 38.83 8.11 56.96 47.70 33.37 7.36 53.62 54.35 

D_NE+VAA+NN 41.00 8.16 59.50 44.59 39.04 8.14 56.88 47.30 33.72 7.40 53.66 53.81 

D_NN 41.33 8.20 60.05 44.45 39.20 8.15 57.27 47.29 33.66 7.39 53.73 54.10 

D_VAA 41.36 8.24 59.64 44.33 38.83 8.18 56.72 47.33 33.94 7.46 53.55 53.76 

D_VAA+NN 41.12 8.20 59.70 44.58 39.06 8.17 57.02 47.29 33.66 7.41 53.69 53.99 

Z_NE 41.15 8.23 59.48 44.53 38.61 8.16 56.57 47.53 33.83 7.45 53.52 53.81 

Z_NE+NN 41.12 8.23 59.49 44.54 38.59 8.16 56.56 47.53 33.82 7.45 53.52 53.80 

Z_NE+VAA 41.13 8.23 59.45 44.53 38.60 8.16 56.57 47.52 33.78 7.45 53.51 53.83 

Z_NE+VAA+NN 41.11 8.23 59.46 44.53 38.60 8.16 56.56 47.53 33.78 7.45 53.50 53.82 

Z_NN 41.25 8.24 59.59 44.43 38.61 8.16 56.58 47.50 33.80 7.44 53.49 53.85 

Z_VAA 41.24 8.24 59.53 44.43 38.64 8.17 56.59 47.48 33.78 7.45 53.51 53.85 

Z_VAA+NN 41.22 8.24 59.54 44.43 38.62 8.16 56.58 47.49 33.76 7.44 53.49 53.86 

A_VAA 41.43 8.22 59.96 44.29 39.66 8.21 57.42 46.85 33.96 7.45 54.03 53.54 

A_VAA-D_NE 41.85 8.29 59.95 43.80 39.73 8.28 57.34 46.50 34.15 7.50 53.86 53.09 

A_VAA-D_NE+NN 41.91 8.37 59.63 43.38 39.47 8.35 57.08 46.03 34.27 7.61 53.78 52.43 

A_VAA-D_NN 41.63 8.25 59.79 44.16 39.64 8.25 57.29 46.73 34.16 7.49 54.12 53.24 

S_VAA-D_NE 40.79 8.14 59.58 44.91 39.11 8.15 57.19 47.39 33.44 7.38 53.91 54.02 

S_VAA-D_NE+NN 41.78 8.28 59.60 43.80 39.46 8.26 57.03 46.48 34.21 7.49 53.69 52.91 

S_VAA-D_NN 41.41 8.22 59.68 44.30 39.66 8.22 57.34 46.89 33.83 7.44 53.69 53.58 

Table 4. BLEU,NIST, METEOR and TER scores of the different experimental conditions for NIST test 
sets MT04-NW, MT05 and MT08-NW*4 

                                                           
4 The gray highlighted cells indicate enhancement over Baseline. The Bold underlined score per column is the best score for 
that Testset/Metric. (Note: lower TER scores indicate better performance) 
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Zone integration is not helping (except non-
significantly5 for NEs on MT08-NW), this is due 
to the fact that marking MWEs as zones and en-
forcing decoder to respect these zones does not 
prevent the decoder from translating MWEs 
compositionally. While the decoder is not al-
lowed to translate out of zone phrases unless it 
fully finishes translating the words in the zone, it 
is permissible to divide the zone into any combi-
nation of phrases and translate these phrases in-
dividually and in any order. 

Following are the translation of our sample 
test sentence for selected conditions: 
-Ref: 

vm An gzw krdstAn AlErAq lm yEd mhmp shlp . 

-Baseline: 

gzw ErAqy krdstAn lm yEd shlA . 

-S_VAA: 

gzw ErAqy krdstAn lys mhmp shlp . 

-S_NN: 

gzw iraqis_kurdistan lm yEd shlA . 

-S_VAA+NN: 

gzw iraqis_kurdistan lm tEd mhmp shlp . 

-Z_VAA+NN: 

gzw ErAqy krdstAn lm yEd shlA . 

7 Conclusion 
Our study indicates that, at least for our language 
pair, different MWE types require different inte-
gration methods in the SMT pipeline where the 
more flexible an MWE is, the more the dynamic 
the integration needs to be. Therefore, for NE 
and NN, dynamic integration yields the best re-
sults. While for VAA, which tend to be more 
rigid, we gain the most from static integration. 

Our results strongly suggest that explicit mod-
eling for MWE and their various types definitely 
impact SMT performance positively. This is im-
portant since the number of MWE 
(VAA+NN+NE) tokens in the text only amounts 
to a total of 5.3% of the data, even though in 
terms of type ratio, MWEs (VAA+NN+NE) ac-
count for 46% of the types (indicating that we 
see a lot of variability in type but with very low 
frequency), yet we see gains of up to 0.82 abso-
lute BLEU points (for A_VAA-D_NE+NN 
MT05). We anticipate such effects to be even 

                                                           
5Statistical significance tests use bootstrapping methods as 
detailed in (Zhang and Vogel, 2010) 

more pronounced in other more nuanced data 
sets such as blogs and broadcast conversations 
where the use of MWEs is pervasive compared 
to Newswire. 

For future work, we plan to extend our match-
ing algorithm to account for syntactically flexible 
MWEs by allowing gaps within MWE. We also 
plan to enhance feature engineering of the dy-
namic integration by assigning each MWE type a 
dedicated feature in the model. Finally we plan to 
extend our study to different language pairs and 
for MWEs in both source and target languages. 
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