@inproceedings{lai-etal-2017-natural,
title = "Natural Language Inference from Multiple Premises",
author = "Lai, Alice and
Bisk, Yonatan and
Hockenmaier, Julia",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1011/",
pages = "100--109",
abstract = "We define a novel textual entailment task that requires inference over multiple premise sentences. We present a new dataset for this task that minimizes trivial lexical inferences, emphasizes knowledge of everyday events, and presents a more challenging setting for textual entailment. We evaluate several strong neural baselines and analyze how the multiple premise task differs from standard textual entailment."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-etal-2017-natural">
<titleInfo>
<title>Natural Language Inference from Multiple Premises</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Bisk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We define a novel textual entailment task that requires inference over multiple premise sentences. We present a new dataset for this task that minimizes trivial lexical inferences, emphasizes knowledge of everyday events, and presents a more challenging setting for textual entailment. We evaluate several strong neural baselines and analyze how the multiple premise task differs from standard textual entailment.</abstract>
<identifier type="citekey">lai-etal-2017-natural</identifier>
<location>
<url>https://aclanthology.org/I17-1011/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>100</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Natural Language Inference from Multiple Premises
%A Lai, Alice
%A Bisk, Yonatan
%A Hockenmaier, Julia
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F lai-etal-2017-natural
%X We define a novel textual entailment task that requires inference over multiple premise sentences. We present a new dataset for this task that minimizes trivial lexical inferences, emphasizes knowledge of everyday events, and presents a more challenging setting for textual entailment. We evaluate several strong neural baselines and analyze how the multiple premise task differs from standard textual entailment.
%U https://aclanthology.org/I17-1011/
%P 100-109
Markdown (Informal)
[Natural Language Inference from Multiple Premises](https://aclanthology.org/I17-1011/) (Lai et al., IJCNLP 2017)
ACL
- Alice Lai, Yonatan Bisk, and Julia Hockenmaier. 2017. Natural Language Inference from Multiple Premises. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 100–109, Taipei, Taiwan. Asian Federation of Natural Language Processing.