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Abstract

We define a novel textual entailment
task that requires inference over mul-
tiple premise sentences. We present
a new dataset for this task that mini-
mizes trivial lexical inferences, empha-
sizes knowledge of everyday events, and
presents a more challenging setting for
textual entailment. We evaluate several
strong neural baselines and analyze how
the multiple premise task differs from
standard textual entailment.

1 Introduction

Standard textual entailment recognition is con-
cerned with deciding whether one statement (the
hypothesis) follows from another statement (the
premise). However, in some situations, multiple
independent descriptions of the same event are
available, e.g. multiple news articles describing
the same story, social media posts by different
people about a single event, or multiple witness
reports for a crime. In these cases, we want to use
multiple independent reports to infer what really
happened.

We therefore introduce a variant of the standard
textual entailment task in which the premise text
consists of multiple independently written sen-
tences, all describing the same scene (see exam-
ples in Figure 1). The task is to decide whether
the hypothesis sentence 1) can be used to describe
the same scene (entailment), 2) cannot be used
to describe the same scene (contradiction), or 3)
may or may not describe the same scene (neutral).
The main challenge is to infer what happened in
the scene from the multiple premise statements, in
some cases aggregating information across multi-
ple sentences into a coherent whole.

Premises:
1. Two girls sitting down and looking at a book.
2. A couple laughs together as they read a book on a train.
3. Two travelers on a train or bus reading a book together.
4. A woman wearing glasses and a brown beanie next to

a girl with long brown hair holding a book.
Hypothesis:

Women smiling. ⇒ENTAILMENT

Premises:
1. Three men are working construction on top of a building.
2. Three male construction workers on a roof working

in the sun.
3. One man is shirtless while the other two men work

on construction.
4. Two construction workers working on infrastructure,

while one worker takes a break.
Hypothesis:

A man smoking a cigarette. ⇒NEUTRAL

Premises:
1. A group of individuals performed in front of a seated

crowd.
2. Woman standing in front of group with black folders in

hand.
3. A group of women with black binders stand in front of a

group of people.
4. A group of people are standing at the front of the room,

preparing to sing.
Hypothesis:

A group having a meeting. ⇒CONTRADICTION

Figure 1: The Multiple Premise Entailment Task

Similar to the SICK and SNLI datasets (Marelli
et al., 2014; Bowman et al., 2015), each premise
sentence in our data is a single sentence describ-
ing everyday events, rather than news paragraphs
as in the RTE datasets (Dagan et al., 2006), which
require named entity recognition and coreference
resolution. Instead of soliciting humans to write
new hypotheses, as SNLI did, we use simplified
versions of existing image captions, and use a
word overlap filter and the structure of the deno-
tation graph of Young et al. (2014) to minimize
the presence of trivial lexical relationships.

2 Related Standard Entailment Tasks

In the following datasets, premises are single sen-
tences drawn from image or video caption data
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that describe concrete, everyday activities.
The SICK dataset (Marelli et al., 2014) con-

sists of 10K sentence pairs. The premise sentences
come from the FLICKR8K image caption corpus
(Rashtchian et al., 2010) and the MSR Video Para-
phrase Corpus (Agirre et al., 2012), while the hy-
potheses were automatically generated. This pro-
cess introduced some errors (e.g. “A motorcycle is
riding standing up on the seat of the vehicle”) and
an uneven distribution of phenomena across en-
tailment classes that is easy to exploit (e.g. nega-
tion (Lai and Hockenmaier, 2014)).

The SNLI dataset (Bowman et al., 2015) con-
tains over 570K sentence pairs. The premises
come from the FLICKR30K image caption corpus
(Young et al., 2014) and VisualGenome (Krishna
et al., 2016). The hypotheses were written by Me-
chanical Turk workers who were given the premise
and asked to write one definitely true sentence,
one possibly true sentence, and one definitely
false sentence. The task design prompted work-
ers to write hypotheses that frequently parallel the
premise in structure and vocabulary, and therefore
the semantic relationships between premise and
hypothesis are often limited to synonym/hyponym
lexical substitution, replacement of short phrases,
or exact word matching.

3 The Multiple Premise Entailment Task

In this paper, we propose a variant of entail-
ment where each hypothesis sentence is paired
with an unordered set of independently written
premise sentences that describe the same event.
The premises may contain overlapping informa-
tion, but are typically not paraphrases. The ma-
jority of our dataset requires consideration of mul-
tiple premises, including aggregation of informa-
tion from multiple sentences.

This Multiple Premise Entailment (MPE) task
is inspired by the Approximate Textual Entailment
(ATE) task of Young et al. (2014). Each item in the
ATE dataset consists of a premise set of four cap-
tions from FLICKR30K, and a short phrase as the
hypothesis. The ATE data was created automati-
cally, under the assumption that items are positive
(approximately entailing) if the hypothesis comes
from the same image as the four premises, and
negative otherwise. However, Young et al. found
that this assumption was only true for just over half
of the positive items. For MPE, we also start with
four FLICKR30K captions as the premises and a

related/unrelated sentence as the hypothesis, but
we restrict the hypothesis to have low word over-
lap with the premises, and we collect human judg-
ments to label the items as entailing, contradictory,
or neutral.

4 The MPE Dataset

The MPE dataset (Figure 1) contains 10,000 items
(8,000 training, 1,000 development and 1,000
test), each consisting of four premise sentences
(captions from the same FLICKR30K image), one
hypothesis sentence (a simplified FLICKR30K
caption), and one label (entailment, neutral, or
contradiction) that indicates the relationship be-
tween the set of four premises and the hypothesis.
This label is based on a consensus of five crowd-
sourced judgments. To analyze the difference be-
tween multiple premise and single premise entail-
ment (Section 5.2), we also collected pair label an-
notations for each individual premise-hypothesis
pair in the development data. This section de-
scribes how we selected the premise and hypoth-
esis sentences, and how we labeled the items via
crowdsourcing.

4.1 Generating the Items

Hypothesis simplification The four premise
sentences of each MPE item consist of four orig-
inal FLICKR30K captions from the same image.
Since complete captions are too specific and are
likely to introduce new details that are not entailed
by the premises, the hypotheses sentences are sim-
plified versions of FLICKR30K captions. Each hy-
pothesis sentence is either a simplified variant of
the fifth caption of the same image as the premises,
or a simplified variant of one of the captions of a
random, unrelated image.

Our simplification process relies on the denota-
tion graph of Young et al. (2014), a subsumption
hierarchy over phrases, constructed from the cap-
tions in FLICKR30K. They define a set of normal-
ization and reduction rules (e.g. lemmatization,
dropping modifiers and prepositional phrases, re-
placing nouns with their hypernyms, extracting
noun phrases) to transform the original captions
into shorter, more generic phrases that are still true
descriptions of the original image.

To simplify a hypothesis caption, we consider
all sentence nodes in the denotation graph that
are ancestors (more generic versions) of this cap-
tion, but exclude nodes that are also ancestors of
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any of the premises. This ensures that the simpli-
fied hypothesis cannot be trivially obtained from a
premise via the same automatic simplification pro-
cedure. Therefore, we avoid some obvious seman-
tic relationships between premises and hypothesis,
such as hypernym replacement, dropping modi-
fiers or PPs, etc.

Limiting lexical overlap Given the set of sim-
plified, restricted hypotheses, we further restrict
the pool of potential items to contain only pair-
ings where the hypothesis has a word overlap ≤
0.5 with the premise set. We compute word over-
lap as the fraction of hypothesis tokens that appear
in at least one premise (after stopword removal).
This eliminates trivial cases of entailment where
the hypothesis is simply a subset of the premise
text. Table 1 shows that the mean word overlap
for our training data is much lower than SNLI.

SNLI MPE
Data full lemma full lemma

All 0.44 ± 0.29 0.48 ± 0.29 0.28 ± 0.22 0.33 ± 0.20
E 0.59 ± 0.31 0.64 ± 0.30 0.34 ± 0.21 0.38 ± 0.19
N 0.41 ± 0.24 0.45 ± 0.24 0.28 ± 0.21 0.33 ± 0.19
C 0.33 ± 0.25 0.36 ± 0.25 0.23 ± 0.22 0.30 ± 0.21

Table 1: Mean word overlap for full training data
and each label, original and lemmatized sentences.
MPE has much lower word overlap than SNLI.

Data selection From this constrained pool of
premises-hypothesis pairings, we randomly sam-
pled 8000 items from the FLICKR30K train-
ing split for our training data. For test and
development data, we sample 1000 items from
FLICKR30K test and 1000 from dev. The hy-
potheses in the training data must be associated
with at least two captions in the FLICKR30K train
split, while the hypotheses in dev/test must be as-
sociated with at least two captions in the union
of the training and dev/test, and with at least one
caption in dev/test alone. Since the test and dev
splits of FLICKR30K are smaller than the training
split, this threshold selects hypotheses that are rare
enough to be interesting and frequent enough to be
reasonable sentences.

4.2 Assigning Entailment Labels

Crowdsourcing procedure For each item, we
solicited five responses from Crowdflower and
Amazon Mechanical Turk as to whether the hy-
pothesis was entailed, contradictory, or neither

given a set of four premises. Instructions are
shown in Table 2. We provided labeled examples
to illustrate the kinds of assumptions we expected.

Entailment labels We assume three labels (en-
tailment, neutral, contradiction). For entailment,
we deliberately asked annotators to judge whether
the hypothesis could very probably describe the
same scene as the premises, rather than specifying
that the hypothesis must definitely be true, as Bow-
man et al. (2015) did for SNLI. Our instructions
align with the standard definition of textual entail-
ment: “T entails H if humans reading T would typ-
ically infer that H is most likely true” (Dagan et al.,
2013). We are not only interested in what is logi-
cally required for a hypothesis to be true, but also
in what human readers assume is true, given their
own world knowledge.

Final label assignment Of the 10,000 items for
which we collected full label annotations, 90%
had a majority label based on the five judgments,
including 16% with a 3-2 split between entailment
and contradiction. The remaining 10% had a 2-2-
1 split across the three classes. We manually ad-
judicated the latter two cases. As a result, 82%
of the final labels in the dataset correspond to a
majority vote over the judgments (the remaining
18% differ due to our manual correction). The re-
leased dataset contains both our final labels and
the crowdsourced judgments for all items.

Image IDs Premises in the our dataset have cor-
responding image IDs from FLICKR30K. We are
interested in the information present in linguis-
tic descriptions of a scene, so our labels reflect
the textual entailment relationship between the
premise text and the hypothesis. Future work
could apply multi-modal representations to this
task, with the caveat that the image would likely
resolve many neutral items to either entailment or
contradiction.

5 Data Analysis

5.1 Statistics

The dataset contains 8000 training items, 1000 de-
velopment items, and 1000 test items. Table 3
shows overall type and token counts and sentence
lengths as well as the label distribution.

The mean annotator agreement, i.e. the fraction
of annotators who agreed with the final label, is
0.70 for the full dataset, or 0.82 for the entailment
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Instructions:
We will show you four caption sentences that describe the same scene, and one proposed sentence. Your task is to decide
whether or not the scene described by the four captions can also be described by the proposed sentence.
The four captions were written by four different people. All four people were shown the same image, and then wrote a
sentence describing the scene in this image. Therefore, there may be slight disagreements among the captions. The images are
photographs from Flickr that show everyday scenes, activities, and events. You will not be given the image that the caption
writers saw.

Process:
Read the four caption sentences and then read the proposed sentence.
Choose 1 of 3 possible responses to the question
Can the scene described by the four captions also be described by the proposed sentence?
Yes: The scene described by the captions can definitely (or very probably) be described by the proposed sentence. The
proposed sentence may leave out details that are mentioned in the captions. If the proposed sentence describes something that
is not mentioned in the captions, it is probably safe to assume the extra information is true, given what you know from the
captions. If there are disagreements among the captions about the details of the scene, the proposed sentence is consistent with
at least one caption.
Unknown: There is not enough information to decide whether or not the scene described by the captions can be described by
the proposed sentence. There may be scenes that can be described by the proposed sentence and the captions, but you don’t
know whether this is the case here.
No: The scene described by the captions can probably not be described by the proposed sentence. The proposed sentence and
the captions either contradict each other or describe what appear to be two completely separate events.

Table 2: The annotation instructions we provided to Crowdflower and Mechanical Turk annotators.

SNLI MPE
#Lexical types 36,616 9,254
#Lexical tokens 12 million 468,524
Mean premise length 14.0 ± 6.0 53.2 ± 12.8
Mean hypothesis length 8.3 ± 3.2 5.3 ± 1.8

Label distribution
Entailment 33.3% 32.3%
Neutral 33.3% 26.3%
Contradiction 33.3% 41.6%

Table 3: Type and token counts, sentence lengths,
and label distributions for training data.

class, 0.42 for neutral, and 0.78 for contradiction.
That is, on average, four of the five crowdsourced
judgments agree with the final label for the entail-
ment and contradiction items, whereas for the neu-
tral items, only an average of two of the five orig-
inal annotators assigned the neutral label, and the
other three were split between contradiction and
entailment.

5.2 MPE vs. Standard Entailment

Multiple premise entailment (MPE) differs from
standard single premise entailment (SPE) in that
each premise consists of four independently writ-
ten sentences about the same scene. To understand
how MPE differs from SPE, we used crowdsourc-
ing to collect pairwise single-premise entailment
labels for each individual premise-hypothesis pair
in the development data. Each consensus label is
based on three judgments.

In Table 4, we compare the full MPE entail-
ment labels (bold⇒E,⇒N,⇒C), to the four pair

SPE labels (E, N, C). The number of SPE labels
that agree with the MPE label yields the five cat-
egories in Table 4, ranging from the most difficult
case where none of the SPE labels agree with the
MPE label (21.8% of the data) to the simplest case
where all four SPE labels agree with the MPE la-
bel (9.8% of the data).

We observe that a simple majority voting
scheme over the gold standard SPE labels would
not be sufficient, since it assigns the correct MPE
label to only 34.6% of the development items (i.e.
those cases where three or four SPE pairs agree
with the MPE label). We also evaluate a slightly
more sophisticated voting scheme that applies the
following heuristic (here, E, N , C are the number
of SPE labels of each class):

If E > C, predict entailment.
Else if C > E, predict contradiction.
Otherwise, predict neutral.

This baseline achieves an accuracy of 41.7%.
These results indicate that MPE cannot be triv-
ially reduced to SPE. That is, even if a model had
access to the correct SPE label for each individ-
ual premise (an unrealistic assumption), it would
require more than simple voting heuristics to ob-
tain the correct MPE label from these pairwise la-
bels. Table 4 illustrates that the majority of MPE
items require aggregation of information about
the described entities and events across multiple
premises. In the first example, the first premise
is consistent with a scene that involves a team of
football players, while only the last premise indi-
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# pairs
agree

% of data Pair
Label

Example Hypothesis and Four Premises

0 21.8 N
N
N
N

A football player in a red uniform is standing in front of other football players in a stadium.
A football player facing off against two others.
A football player wearing a red shirt.
Defensive player waiting for the snap.
⇒E The team waiting.

1 26.9 N
C
N
N

A person is half submerged in water in their yellow kayak.
A woman has positioned her kayak nose down in the water.
A person in a canoe is rafting in wild waters.
A kayaker plunges into the river.
⇒C A man in a boat paddling through waters.

2 16.7 E
E
N
N

A batter playing cricket missed the ball and the person behind him is catching it.
A cricket player misses the pitch.
The three men are playing cricket.
A man struck out playing cricket.
⇒E A man swings a bat.

3 24.8 N
N
E
N

A young gymnast, jumps high in the air, while performing on a balance beam.
A gymnast performing on the balance beam in front of an audience.
The young gymnast’s supple body soars above the balance beam.
A gymnast is performing on the balance beam.
⇒N A woman doing gymnastics.

4 9.8 C
C
C
C

A man with a cowboy hat is riding a horse that is jumping.
A cowboy riding on his horse that is jumping in the air.
A cowboy balances on his horse in a rodeo.
Man wearing a cowboy hat riding a horse.
⇒C Men pulled by animals.

Table 4: MPE examples that illustrate the difference between pair labels and the full label. We include
one example for each category, based on the number of pair labels that agree with the full label, and
indicate the size of each category as a percentage of the development data.

cates that the team may be waiting. Moreover, the
simple majority voting would work on the fourth
example but fail on the second example, while the
more sophisticated voting scheme would work on
the second example and fail on the fourth.

5.3 Semantic Phenomena

We used a random sample of 100 development
items to examine the types of semantic phenom-
ena that are useful for inference in this dataset.
We categorized each item by type of knowledge
or reasoning necessary to predict the correct label
for the hypothesis given the premises. An item be-
longs to a category if at least one premise in that
item exhibits that semantic phenomenon in rela-
tion to the hypothesis, and an item may belong
to multiple categories. For each category, Table
5 contains its frequency, an illustrative example
containing the relevant premise, and the distribu-
tion over entailment labels. We did our analysis
on full items (four premises and the correspond-
ing hypothesis), but the examples in Table 5 have
been simplified to a single premise for simplicity.

Word equivalence Items in this category con-
tain a pair of equivalent words (synonyms or para-
phrases). The word in the hypothesis can be ex-
changed for the word in the premise without sig-
nificantly changing the meaning of the hypothesis.

Word hypernymy These items involve lexical
hypernyms: someone who is a man is also a person
(entailment), but a person may or may not be a
man (neutral), and somebody who is a man is not
a child (contradiction).

Phrase equivalence These items involve equiv-
alent phrases, i.e. synonyms or paraphrases. The
phrase in the hypothesis can be replaced by the
phrase in the premise without significantly chang-
ing the meaning of the hypothesis.

Phrase hypernymy Items in this category in-
volve a specific phrase and a general phrase: the
more general phrase “doing exercises” can refer to
multiple types of exercises in addition to “stretch-
ing their legs.”

Mutual exclusion Distinguishing between con-
tradiction and neutral items involves identifying
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# E N C Example Premise and Hypothesis Pair

Total 100 31 29 40

Word
equivalence

16 12 4 0 A person climbing a rock face.
A rock climber scales a cliff. ⇒E

Word
hypernymy

19 6 6 7 Girl in a blue sweater painting while looking at a bird in a book.
A child painting a picture. ⇒E

Phrase
equivalence

7 6 1 0 A couple in their wedding attire stand behind a table with a wedding cake and flowers.
Newlyweds standing. ⇒E

Phrase
hypernymy

8 6 2 0 A group of young boys wearing track jackets stretch their legs on a gym floor as they
sit in a circle.
A group doing exercises. ⇒E

Mutual
exclusion

25 0 0 25 A woman in a red vest working at a computer.
Lady doing yoga. ⇒C

Compatibility 18 0 18 0 Onlookers watch.
A girl at bat in a softball game. ⇒N

World
knowledge

35 14 9 12 A young woman gives directions to an older woman outside a subway station.
Women standing. ⇒E

Table 5: Analysis of 100 random dev items. For each phenomenon, we show the distribution over labels
and an example. The label is indicated with E, N, C. We use color and underlining to indicate the relevant
comparisons. The indicated span of text is part of the necessary information to predict the correct label,
but may not be sufficient on its own.

actions that are mutually exclusive, i.e. cannot
be performed simultaneously by the same agent
(“Two doctors perform surgery” vs. “Two sur-
geons are having lunch”).

Compatibility The opposite of mutual
exclusion is compatibility: two actions that
can be performed simultaneously by the same
agent (e.g. “A boy flying a red and white kite” vs.
“A boy is smiling”).

World knowledge These items require extra-
linguistic knowledge about the relative frequency
and co-occurrence of events in the world (not over-
lapping with the mutual exclusion or compatibility
phenomena). A human reader can infer that chil-
dren in a potato sack race are having fun (while a
marathon runner competing in a race might not be
described as having fun).

5.4 Combining Information Across Premises
In addition to the semantic phenomena we have
just discussed, the data presents the challenge
of how to combine information across multiple
premises. We examined examples from the de-
velopment data to analyze the different types of
information aggregation present in our dataset.

Coreference resolution This case requires
cross-caption coreference resolution of entity
mentions from multiple premises and the hy-
pothesis. In this example, a human reader can

recognize that “two men” and “two senior citi-
zens” refer to the same entities, i.e. the “two older
men” in the hypothesis. Given that information,
the reader can additionally infer that the two older
men on the street are likely to be standing.

1. Two men in tan coats exchange looks on the city sidewalk.
2. Two senior citizens talking on a public street.
3. Two men in brown coats on the street.
4. Two men in beige coats, talking.

Two older men stand. ⇒ENTAILMENT

Event resolution This case requires resolving
various event descriptions from multiple premises
and the hypothesis. In the following example, a
human reader recognizes that the man is sitting on
scaffolding so that he can repair the building, and
therefore he is doing construction work.

1. A man is sitting on a scaffolding in front a white building.
2. A man is sitting on a platform next to a building ledge.
3. A man looks down from his balcony from a stone building.
4. Repairing the front of an old building.

A man doing construction work. ⇒ENTAILMENT

Visual ambiguity resolution This case involves
reconciling apparently contradictory information
across premises. These discrepancies are largely
due to the fact that the premise captions were writ-
ten to describe an image. Sometimes the image
contained visually ambiguous entities or events
that are then described by different caption writ-
ers. In this example, in order to resolve the dis-
crepancy, the reader must recognize from context
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that “woman” and “young child” (also “person”)
refer to the same entity.
1. A person in a green jacket and pants appears to be digging
in a wooded field with several cars in the background.
2.A young child in a green jacket rakes leaves.
3. A young child rakes leaves in a wooded area.
4. A woman cleaning up a park.

A woman standing in the forest. ⇒ENTAILMENT

Scene resolution These examples require the
reader to build a mental representation of the scene
from the premises in order to assess the probabil-
ity that the hypothesis is true. In the first example,
specific descriptions – a jumping horse, a cow-
boy balancing, a rodeo – combine to assign a high
probability that the specific event described by the
hypothesis is true.
1. A man with a cowboy hat is riding a horse that is jumping.
2. A cowboy riding on his horse that is jumping in the air.
3. A cowboy balances on his horse in a rodeo.
4. Man wearing a cowboy hat riding a horse.

An animal bucking a man. ⇒ENTAILMENT

In the next example, the hypothesis does not
contradict any individual premise sentence. How-
ever, a reader who understands the generic scene
described knows that the very specific hypothesis
description is unlikely to go unmentioned. Shirt-
lessness would be a salient detail in the this scene,
so the fact that none of the premises mention it
means that the hypothesis is likely to be false.
1. A young couple sits in a park eating ice cream as children
play and other people enjoy themselves around them.
2. Couple in park eating ice cream cones with three other
adults and two children in background.
3. A couple enjoying ice cream outside on a nice day.
4. A couple eats ice cream in the park.

A shirtless man sitting. ⇒CONTRADICTION

In the final example, the premises present a
somewhat generic description of the scene. While
some premises lean towards entailment (a woman
and a man in discussion could be having a work
meeting) and others lean towards contradiction
(two people conversing outdoors at a restaurant are
probably not working), none of them contain over-
whelming evidence that the scene entails or con-
tradicts the hypothesis. Therefore, the hypothesis
is neutral given the premises.
1. A blond woman wearing a gray jacket converses with
an older man in a green shirt and glasses while sitting on a
restaurant patio.
2. A blond pony-tailed woman and a gray-haired man con-
verse while seated at a restaurant’s outdoor area.
3. A woman with blond hair is sitting at a table and talking to
a man with glasses.
4. A woman discusses something with an older man at a table
outside a restaurant.

A woman doing work. ⇒NEUTRAL

6 Models

We apply several neural models from the entail-
ment literature to our data. We also present a
model designed to handle multiple premises, as
this is unique to our dataset.

LSTM In our experiments, we found that the
conditional LSTM (Hochreiter and Schmidhuber,
1997) model of Rocktäschel et al. (2016) outper-
formed a Siamese LSTM network (e.g. Bow-
man et al. (2015)), so we report results using the
conditional LSTM. This model consists of two
LSTMs that process the hypothesis conditioned on
the premise. The first LSTM reads the premise.
Its final cell state is used to initialize the cell state
of the second LSTM, which reads the hypothesis.
The resulting premise vector and hypothesis vec-
tor are concatenated and passed through a hidden
layer and a softmax prediction layer. When han-
dling four MPE premise sentences, we concate-
nate them into a single sequence (in the order of
the caption IDs) that we pass to the first LSTM.
When we only have a single premise sentence, we
simply pass it to the first LSTM.

Word-to-word attention Neural attention mod-
els have shown a lot of success on SNLI. We
evaluate the word-to-word attention model of
Rocktäschel et al. (2016).1 This model learns a
soft alignment of words in the premise and hy-
pothesis. One LSTM reads the premise and pro-
duces an output vector after each word. A second
LSTM, initialized by the final cell state of the first,
reads the hypothesis one word at a time. For each
word wt in the hypothesis, the model produces at-
tention weights αt over the premise output vec-
tors. The final sentence pair representation is a
nonlinear combination of the attention-weighted
representation of the premise and the final out-
put vector from the hypothesis LSTM. This final
sentence pair representation is passed through a
softmax layer to compute the cross-entropy loss.
Again, when training on MPE, we concatenate the
premise sentences into a single sequence as input
to the premise LSTM.

Premise-wise sum of experts (SE) The previ-
ous models all assume that the premise is a single
sentence, so in order to apply them naively to our
dataset, we have to concatenate the four premises.

1Our experiments use a reimplementation of their model
https://github.com/junfenglx/reasoning_attention
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Training Class LSTM SE Attention

SNLI only 52.6 55.9 55.0
E 85.8 71.5 81.7
N 8.4 21.6 16.4
C 55.7 62.0 54.5

MPE only 53.5 56.3 53.9
E 63.1 61.3 48.3
N 39.2 30.2 30.6
C 53.5 66.5 71.2

SNLI+MPE 60.4 60.0 64.0
E 65.1 65.4 75.9
N 40.9 42.7 32.8
C 67.2 65.1 71.5

Table 6: Entailment accuracy on MPE (test). SE is
best when training only on SNLI or MPE. Atten-
tion is best when training on SNLI+MPE.

To capture what distinguishes our task from stan-
dard entailment, we also consider a premise-wise
sum of experts (SE) model that makes four in-
dependent decisions for each premise paired with
the hypothesis. This model can adjust how it pro-
cesses each premise based on the relative predic-
tions of the other premises.

We apply the conditional LSTM repeatedly to
read each premise and the hypothesis, producing
four premise vectors p1 ... p4 and four hypothesis
vectors h1 ... h4 (conditioned on each premise).
Each premise vector pi is concatenated with its
hypothesis vector hi and passed through a feed-
forward layer to produce logit prediction li. We
sum l1 ... l4 to obtain the final prediction, which
we use to compute the cross-entropy loss.

When training on SNLI, we apply the condi-
tional LSTM only once to read the premise and
hypothesis and produce p1 and h1. We pass the
concatenation of p1 and h1 through the feedfor-
ward layer to produce l1, which we use to compute
the cross-entropy loss.

7 Training Details

For the LSTM and SE models, we use 300d GloVe
vectors (Pennington et al., 2014) trained on 840B
tokens as the input. The attention model uses
word2vec vectors (Mikolov et al., 2013) (replac-
ing with GloVe had almost no effect on perfor-
mance). We use the Adam optimizer (Kingma and
Ba, 2014) with the default configuration. We train
each model for 10 epochs based on convergence
on dev. For joint SNLI+MPE training, we use
the same parameters and pretrain for 10 epochs on
SNLI, then train for 10 epochs on MPE. This was

the best joint training approach we found.
When training on SNLI, we use the best pa-

rameters reported for the word-to-word attention
model.2 When training on MPE only, we set
dropout, learning rate, and LSTM dimensionality
as the result of a grid search on dev.3

8 Experimental Results

8.1 Overall Performance
Table 6 contains the test accuracies of the mod-
els from Section 6: LSTM, sum of experts (SE),
and word-to-word attention under three training
regimes: SNLI only, MPE only, and SNLI+MPE.

We train only on SNLI to see whether mod-
els can generalize from one entailment task to
the other. Interestingly, the attention model’s ac-
curacy on MPE is higher after training only on
SNLI than training on MPE, perhaps because it
requires much more data to learn reasonable at-
tention weighting parameters.

When training on SNLI or MPE alone, the best
model is SE, the only model that handles the four
premises. It is not surprising that the LSTM model
performs poorly, as it is forced to reduce a very
long sequence of words to a single vector. The
LSTM performs on par with SE when training on
SNLI+MPE, but our analysis (Section 5.3) shows
that their errors are quite different.

The attention model trained on SNLI+MPE has
the highest accuracy overall. We reason that pre-
training on SNLI is necessary to learn reason-
able parameters for the attention weights before
training on MPE, a smaller dataset where word-
to-word inferences may be less obvious. When
trained only on MPE, the attention model per-
forms much worse than SE, with particularly low
accuracy on entailing items.

We implemented a model that adds attention to
the SE model, but it overfit on SNLI and could
not match other models’ accuracy, reaching only
about 58% on dev compared to 59-63%. Future
work will investigate other approaches to combin-
ing the benefits of the SE and attention models.

8.2 Performance by Pair Agreement
To get a better understanding of how our task dif-
fers from standard entailment, we analyze how

2Dropout: 0.8, learning rate: 0.001, vector dim: 100,
batch size: 32

3LSTM: dropout: 0.8, vector dim: 75. SE: dropout: 0.8,
vector dim: 100. Attention: dropout: 0.6, vector dim: 100.
Learning rate: 0.001 for all models
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Accuracy on SPE-MPE agreement subsets
# pairs agree 0 1 2 3 4
% of data 21.8 26.9 16.7 24.8 9.8

LSTM 57.3 57.6 60.5 67.1 63.3
SE 59.6 58.0 63.3 62.9 66.3
Attention 65.6 57.6 62.9 68.3 70.4

Table 7: Accuracy for each model (trained on
SNLI+MPE) on the dev data subsets that have 0–4
SPE labels that match the MPE label (Table 4).

performance is affected by the number of premises
whose SPE label agrees with the MPE label. Ta-
ble 7 shows the accuracy of each SNLI+MPE-
trained model on the dev data grouped by SPE-
MPE label agreement (as in Table 4).

The attention model has the highest accuracy on
three of five categories, including the most diffi-
cult category where none of the SPE labels match
the MPE label. SE has the highest accuracy in
the remaining two categories. The attention model
demonstrates large gains in the easiest categories,
perhaps because there is less advantage to aggre-
gating individual premise predictions (as SE does)
and more cases where attention weighting of in-
dividual words is useful. On the other hand, the
attention model also does well on the most dif-
ficult category, indicating that it may be able to
partially aggregate premises by increasing atten-
tion weights on phrases from multiple sentences.
Attention and SE exhibit complementary strengths
that we hope to combine in future work.

8.3 Performance by Semantic Phenomenon

Table 8 shows the performance of the three
SNLI+MPE-trained models over semantic phe-
nomena, based on the 100 annotated dev items
(see Section 5.3 and Table 5). It may not be infor-
mative to analyze performance on smaller classes
(e.g. phrase equivalence and phrase hypernymy),
but we can still look at other noticeable differences
between models.

Although the attention model outperformed
both LSTM and SE models in overall accuracy,
it is not the best in every category. Both SE and
attention have access to the same information, but
the attention model does better on items that con-
tain relationships like hypernyms and synonyms
for both words and short phrases. The SE model is
best at mutual exclusion, compatibility, and world
knowledge categories, e.g. knowing that a man
who is resting is not kayaking, and a bride is not
also a cheerleader. In cases that require analy-

Accuracy
Phenomenon LSTM SE Att #

Word equivalence 50.0 56.2 68.8 16
Word hypernymy 52.6 47.4 52.6 19
Phrase equivalence 57.1 57.1 85.7 7
Phrase hypernymy 50.0 50.0 62.5 8
Mutual exclusion 68.0 72.0 60.0 25
Compatibility 50.0 61.1 50.0 18
World knowledge 57.1 62.9 45.7 35

Table 8: Accuracy for each semantic phenomenon
on 100 dev items. While attention was the best
model overall, it does not have the highest accu-
racy for all phenomena.

sis of mutually exclusive or compatible events, a
model like SE has an advantage since it can rein-
force its weighted combination prediction by ex-
amining each premise separately.

9 Conclusion

We presented a novel textual entailment task
that involves inference over longer premise
texts and aggregation of information from
multiple independent premise sentences. This
task is an important step towards a system
that can create a coherent scene representation
from longer texts, such as multiple indepen-
dent reports. We introduced a dataset for this
task (http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html) which
presents a more challenging, realistic entailment
problem and cannot be solved by majority voting
or related heuristics. We presented the results
of several strong neural entailment baselines on
this dataset, including one model that aggregates
information from the predictions of separate
premise sentences. Future work will investigate
aggregating information at earlier stages to
address the cases that require explicit reasoning
about the interaction of multiple premises.
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