@inproceedings{teranishi-etal-2017-coordination,
title = "Coordination Boundary Identification with Similarity and Replaceability",
author = "Teranishi, Hiroki and
Shindo, Hiroyuki and
Matsumoto, Yuji",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1027/",
pages = "264--272",
abstract = "We propose a neural network model for coordination boundary detection. Our method relies on the two common properties - similarity and replaceability in conjuncts - in order to detect both similar pairs of conjuncts and dissimilar pairs of conjuncts. The model improves identification of clause-level coordination using bidirectional RNNs incorporating two properties as features. We show that our model outperforms the existing state-of-the-art methods on the coordination annotated Penn Treebank and Genia corpus without any syntactic information from parsers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="teranishi-etal-2017-coordination">
<titleInfo>
<title>Coordination Boundary Identification with Similarity and Replaceability</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Teranishi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroyuki</namePart>
<namePart type="family">Shindo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a neural network model for coordination boundary detection. Our method relies on the two common properties - similarity and replaceability in conjuncts - in order to detect both similar pairs of conjuncts and dissimilar pairs of conjuncts. The model improves identification of clause-level coordination using bidirectional RNNs incorporating two properties as features. We show that our model outperforms the existing state-of-the-art methods on the coordination annotated Penn Treebank and Genia corpus without any syntactic information from parsers.</abstract>
<identifier type="citekey">teranishi-etal-2017-coordination</identifier>
<location>
<url>https://aclanthology.org/I17-1027/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>264</start>
<end>272</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Coordination Boundary Identification with Similarity and Replaceability
%A Teranishi, Hiroki
%A Shindo, Hiroyuki
%A Matsumoto, Yuji
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F teranishi-etal-2017-coordination
%X We propose a neural network model for coordination boundary detection. Our method relies on the two common properties - similarity and replaceability in conjuncts - in order to detect both similar pairs of conjuncts and dissimilar pairs of conjuncts. The model improves identification of clause-level coordination using bidirectional RNNs incorporating two properties as features. We show that our model outperforms the existing state-of-the-art methods on the coordination annotated Penn Treebank and Genia corpus without any syntactic information from parsers.
%U https://aclanthology.org/I17-1027/
%P 264-272
Markdown (Informal)
[Coordination Boundary Identification with Similarity and Replaceability](https://aclanthology.org/I17-1027/) (Teranishi et al., IJCNLP 2017)
ACL