@inproceedings{lahiri-etal-2017-identifying,
title = "Identifying Usage Expression Sentences in Consumer Product Reviews",
author = "Lahiri, Shibamouli and
Vydiswaran, V.G.Vinod and
Mihalcea, Rada",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1040/",
pages = "394--403",
abstract = "In this paper we introduce the problem of identifying usage expression sentences in a consumer product review. We create a human-annotated gold standard dataset of 565 reviews spanning five distinct product categories. Our dataset consists of more than 3,000 annotated sentences. We further introduce a classification system to label sentences according to whether or not they describe some {\textquotedblleft}usage{\textquotedblright}. The system combines lexical, syntactic, and semantic features in a product-agnostic fashion to yield good classification performance. We show the effectiveness of our approach using importance ranking of features, error analysis, and cross-product classification experiments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lahiri-etal-2017-identifying">
<titleInfo>
<title>Identifying Usage Expression Sentences in Consumer Product Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shibamouli</namePart>
<namePart type="family">Lahiri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.G.Vinod</namePart>
<namePart type="family">Vydiswaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we introduce the problem of identifying usage expression sentences in a consumer product review. We create a human-annotated gold standard dataset of 565 reviews spanning five distinct product categories. Our dataset consists of more than 3,000 annotated sentences. We further introduce a classification system to label sentences according to whether or not they describe some “usage”. The system combines lexical, syntactic, and semantic features in a product-agnostic fashion to yield good classification performance. We show the effectiveness of our approach using importance ranking of features, error analysis, and cross-product classification experiments.</abstract>
<identifier type="citekey">lahiri-etal-2017-identifying</identifier>
<location>
<url>https://aclanthology.org/I17-1040/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>394</start>
<end>403</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Usage Expression Sentences in Consumer Product Reviews
%A Lahiri, Shibamouli
%A Vydiswaran, V.G.Vinod
%A Mihalcea, Rada
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F lahiri-etal-2017-identifying
%X In this paper we introduce the problem of identifying usage expression sentences in a consumer product review. We create a human-annotated gold standard dataset of 565 reviews spanning five distinct product categories. Our dataset consists of more than 3,000 annotated sentences. We further introduce a classification system to label sentences according to whether or not they describe some “usage”. The system combines lexical, syntactic, and semantic features in a product-agnostic fashion to yield good classification performance. We show the effectiveness of our approach using importance ranking of features, error analysis, and cross-product classification experiments.
%U https://aclanthology.org/I17-1040/
%P 394-403
Markdown (Informal)
[Identifying Usage Expression Sentences in Consumer Product Reviews](https://aclanthology.org/I17-1040/) (Lahiri et al., IJCNLP 2017)
ACL