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Abstract

We revisit the idea of mining Wikipedia
in order to generate named-entity anno-
tations. We propose a new methodology
that we applied to the English Wikipedia
to build WiNER, a large, high quality, an-
notated corpus. We evaluate its useful-
ness on 6 NER tasks, comparing 4 popular
state-of-the art approaches. We show that
LSTM-CRF is the approach that benefits
the most from our corpus. We report im-
pressive gains with this model when using
a small portion of WiNER on top of the
CONLL training material. Last, we pro-
pose a simple but efficient method for ex-
ploiting the full range of WiNER, leading
to further improvements.

1 Introduction

Named-Entity Recognition (NER) is the task of
identifying textual mentions and classifying them
into a predefined set of types. It is an important
pre-processing step in NLP and Information Ex-
traction. Various approaches have been proposed
to tackle the task, including conditional random
fields (Finkel et al., 2005), perceptrons (Ratinov
and Roth, 2009), and neural network approaches
(Collobert et al., 2011; Lample et al., 2016; Chiu
and Nichols, 2016).

One issue with NER is the small amount of
annotated data available for training, and their
limited scope (see Section 4.1). Furthermore,
some studies (Onal and Karagoz, 2015; Augen-
stein et al., 2017) have demonstrated that named-
entity systems trained on news-wire data perform
poorly when tested on other text genres. This mo-
tivated some researchers to create a named-entity
labelled corpus from Wikipedia. This was notably
attempted by Nothman et al. (2008) and more re-

cently revisited by Al-Rfou et al. (2015) in a mul-
tilingual context. Both studies leverage the link
structure of Wikipedia to generate named-entity
annotations. Because only a tiny portion of texts in
Wikipedia are anchored, some strategies are typ-
ically needed to infer more annotations (Ghad-
dar and Langlais, 2016b). Such a process typi-
cally yields a noisy corpus for which filtering is
required.

In this paper, we revisit the idea of auto-
matically extracting named-entity annotations out
of Wikipedia. Similarly to the aforementioned
works, we gather anchored strings in a page as
well as their type according to Freebase (Bol-
lacker et al., 2008) but, more importantly, we
also generate annotations for texts not anchored
in Wikipedia. We do this by considering coref-
erence mentions of anchored strings as candidate
annotations, and by exploiting the out-link struc-
ture of Wikipedia. We applied our methodology
on a 2013 English Wikipedia dump, leading to a
large annotated corpus called WiNER, which con-
tains more annotations than similar corpora and,
as we shall see, is more useful for training NER
systems.

We discuss related work in Section 2 and
present the methodology we used to automati-
cally extract annotations from Wikipedia in Sec-
tion 3. The remainder of the article describes the
experiment we conducted to measure the impact
of WiNER for training NER systems. We describe
the datasets and the different NER systems we
trained in Section 4. We report the experiments
we conducted in Section 5. We propose a simple
but efficient two stage strategy we designed in or-
der to benefit the full WiNER corpus in Section 6.
We report error analysis in Section 7 and conclude
in Section 8.
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2 Related Work

Turning Wikipedia into a corpus of named enti-
ties annotated with types is a task that received
some attention in a monolingual setting (Toral and
Munoz, 2006; Nothman et al., 2008), as well as
in a multilingual one (Richman and Schone, 2004;
Al-Rfou et al., 2015).

In (Nothman et al., 2008) the authors describe
an approach that exploits links between articles
in Wikipedia in order to detect entity mentions.
They describe a pipeline able to detect their types
(ORG, PER, LOC, MISC), making use of hand-
crafted rules specific to Wikipedia, and a boot-
strapping approach for identifying a subset of
Wikipedia articles where the type of the entity
can be predicted with confidence. Since anchored
strings in Wikipedia lack coverage (in part be-
cause Wikipedia rules recommend that only the
first mention of a given concept be anchored in a
page), the authors also describe heuristics based
on redirects to identify more named-entity men-
tions. They tested several variants of their corpus
on three NER benchmarks and showed that sys-
tems trained on Wikipedia data may perform bet-
ter than domain-specific systems in an out-domain
setting.

Al-Rfou et al. (2015), follow a similar path al-
beit in a multilingual setting. They use Freebase to
identify categories (PER, LOC, ORG), and trained
a neural network on the annotations extracted.
In order to deal with non-anchored mentions in
Wikipedia, they propose a first-order coreference
resolution algorithm where they link mentions in
a text using exact string matching (thus Obama
will be linked to the concept Barack Obama and
labelled PER). They still had to perform some sen-
tence selection, based on an oversampling strat-
egy, in order to construct a subset of the original
training data.

Our work revisits the idea developed in these
two studies. Our main contribution consists in
dealing specifically with non anchored strings in
Wikipedia pages. We do this by analyzing the out-
link structure in Wikipedia, coupled to the infor-
mation of all the surface forms that have been used
in a Wikipedia article to mention the main concept
being described by this article. This process, de-
tailed in the next section, leads to a much larger set
of annotations, whose quality obviates the need for
ad-hoc filtering or oversampling strategies.

3 WiNER

We applied the pipeline described hereafter to
a dump of English Wikipedia from 2013, and
obtained WiNER, a resource built out of 3.2M
Wikipedia articles, comprising more than 1.3G to-
kens accounting for 54M sentences, 41M of which
contain at least one named-entity annotation. We
generated a total of 106M annotations (an average
of 2 entities per sentence).

3.1 Annotation Pipeline

The pipeline used to extract named-entity
annotations from Wikipedia is illustrated in
Figure 1, for an excerpt of the Wikipedia article
Chilly Gonzales, hereafter named the target
article. Similarly to (Nothman et al., 2008;
Al-Rfou et al., 2015), the anchored strings of
out-links in the target article are elected mentions
of named entities. For instance, we identify
Warner Bros. Records and Paris as mentions in
our target article. In general, a Wikipedia article
has an equivalent page in Freebase. We remove
mentions that do not have such a page. This
way, we filter out anchored strings that are not
named entities (such as List of Presidents of the
United States). We associate a category with
each mention by a simple strategy, similar to
(Al-Rfou et al., 2015), which consists in mapping
Freebase attributes to entity types. For instance,
we map organization/organization,
location/location and people/person
attributes to ORG, LOC and PER, respectively. If
an entry does not belong to any of the previous
classes, we tag it as MISC.

Because the number of anchored strings in
Wikipedia is rather small — less than 3% of the
text tokens according to (Al-Rfou et al., 2015) —
we propose to leverage: (1) the out-link struc-
ture of Wikipedia, (2) the information of all the
surface strings used to describe the main concept
of a Wikipedia article. For the latter, we rely on
the resource1 described in (Ghaddar and Langlais,
2016a) that lists, for all the articles in Wikipedia
(those that have a Freebase counterpart), all the
text mentions that are coreferring to the main con-
cept of an article. For instance, for the article
Chilly Gonzales, the resource lists proper names
(e.g. Gonzales, Beck), nominal (e.g. the per-

1http://rali.iro.umontreal.ca/rali/en/
wikipedia-main-concept
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[Chilly Gonzales]PER (born [Jason Charles Beck]PER; 20 March 1972)
is a [Canadian]MISC musician who resided in [Paris]LOC, [France]LOC

for several years, and now lives in [Cologne]LOC, [Germany]LOC.
Though best known for his first MC [...], he is a pianist, producer,
and songwriter. He was signed to a three-album deal with Warner
Music Canada in 1995, a subsidiary of [Warner Bros. Records]ORG

. . . While the album’s production values were limited [Warner
Bros.]ORG simply . . .

Paris LOC

↪→ Europe, France, Napoleon, . . .

Cologne LOC

↪→ Germany, Alsace, . . .

Warner Bros. Records ORG

↪→Warner, Warner Bros., . . .

France LOC

↪→ French Republic, Kingdom. . .

OLT

CT

Figure 1: Illustration of the process with which we gather annotations into WiNER for the target page
https://en.wikipedia.org/wiki/Chilly_Gonzales. Bracketed segments are the anno-
tations, underlined text are anchored strings in the corresponding Wikipedia page. OLT represents the
out-link table (which is compiled from the Wikipedia out-link graph structure), and CT represents the
coreference table we gathered from the resource.

former) and pronominal (e.g. he) mentions that
refer to Chilly Gonzales. From this resource, we
consider proper name mentions, along with their
Freebase type.

Our strategy for collecting extra annotations is
a 3-step process, where:

1. We consider direct out-links of the target arti-
cle. We search in its text the titles of the ar-
ticles we reach that way. We also search for
their coreferences as listed in the aforemen-
tioned resource. For instance, we search (exact
match) Warner Bros. Records and its corefer-
ences (e.g. Warner, Warner Bros.) in the target
article. Each match is labelled with the type
associated (in Freebase) with the out-linked ar-
ticle (in our example, ORG).

2. We follow out-links of out-links, and search
in the target article (by an exact string match)
the titles of the articles reached. For instance,
we search for the strings Europe, France,
Napoleon, as well as other article titles from
the out-link list of the article Paris. The
matched strings are elected named entities and
are labeled with their Freebase type.

3. For the titles matched at step 2, we also match
their coreferent mentions. For instance, be-
cause we matched France, we also search its
coreferences as listed in the coreference table
(CT).

During this process, some collisions may occur.
We solve the issue of overlapping annotations by
applying the steps exactly in the order presented
above. Our steps have been ordered in such a

way that the earlier the step, the more confidence
we have in the strings matched at that step. It
may also happen that two out-link articles contain
the same mention (for instance Washington State
and George Washington both contain the mention
Washington), in which case we annotate this am-
biguous mention with the type of the closest2 un-
ambiguous mention.

Step 1 of our pipeline raises the coverage3 from
less than 3% to 9.5%, while step 2 and 3 increase
it to 11.3% and 15% respectively. This is actually
very close to the coverage of the manually anno-
tated CONLL-2003 dataset, which is 17%. Con-
sidering that we do not apply any specific filtering,
as is done for instance in (Nothman et al., 2008),
our corpus contains many more annotations than
existing Wikipedia-based named-entity annotated
corpora.

3.2 Manual Evaluation

We assessed the annotation quality of a ran-
dom subset of 1000 mentions. While we measure
an accuracy of 92% for mentions detected during
step 1, the accuracy decreases to 88% and 77%
during step 2 and 3 respectively. We identified two
main sources for errors in the coreferent mentions
detection procedure. One source of error comes
from the resource used to identify the mentions
of the main concept. We measured in a previous
work (Ghaddar and Langlais, 2016a), that the pro-
cess we rely on for this (a binary classifier) has an
accuracy of 89%. Example (a) of Figure 2 illus-

2Before or after the named-entity.
3Ratio of annotated tokens.
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trates such a mistake where the family name Pope
is wrongly assumed coreferent to the brewery El-
dridge Pope. We also found that our 3-step pro-
cess and the disambiguation rule fails in 15% of
the cases. Figure 2 illustrates an example where
we erroneously recognize the mention Toronto (re-
ferring to the town) as a coreferent of the (non am-
biguous mention) Toronto FC, simply because the
latter is close to the former.

a) [Eldridge Pope]ORG was a traditional brew-
ery.....Sixteen years later the [Pope]ORG?

brothers floated the business...

b) Montreal Impact’s biggest rival is [Toronto
FC]ORG because Canada’s two largest cities
have rivalries in and out of sport. Mon-
treal and [Toronto]ORG? professional soccer
teams have competed against each other for
over 40 years.

c) I didn’t want to open up my [Rolodex]ORG?

and get everyone to sing for me.

Figure 2: Examples of errors in our annotation
pipeline. Faulty annotations are marked with a
star.

Table 1 shows the counts of token strings anno-
tated with at least two types. For instance, there
are 230k entities that are annotated in WiNER as
PER and LOC. It is reassuring that different men-
tions with the same string are labelled differently.
The cells on the diagonal indicate the number of
mentions labelled with a given tag.

PER LOC ORG MISC

PER 28M 230k 80k 250k
LOC - 29M 120k 190k
ORG - - 13M 206k
MISC - - - 36M

Table 1: Number of times a text string (mention) is
labelled with (at least) two types in WiNER. The
cells on the diagonal indicate the number of anno-
tations.

We further examined a random subset of 100
strings that were annotated differently (in different
contexts) and found that 89% of the time, the cor-
rect type was identified. For instance, in example
Figure 2c) — a sentence of the Chilly Gonzales
article — the mention Rolodex is labelled as ORG,

while the correct type is MISC. Our pipeline fails
to disambiguate the company from its product.

4 Protocol

4.1 Data Sets

We used a number of datasets in our experiments.
For CONLL, MUC and ONTO, that are often used
to benchmark NER, we used the test sets dis-
tributed in official splits. For the other test sets,
that are typically smaller, we used the full dataset
as a test material.

CONLL the CONLL-2003 NER Shared Task
dataset (Tjong Kim Sang and De Meulder, 2003)
is a well known collection of Reuters newswire
articles that contains a large portion of sports
news. It is annotated with four entity types (PER,
LOC, ORG and MISC).

MUC the MUC-6 (Chinchor and Sundheim,
2003) dataset consists of newswire articles from
the Wall Street Journal annotated with PER,
LOC, ORG, as well as a number of temporal
and numerical entities that we excluded from our
evaluation for the sake of homogeneity.

ONTO the OntoNotes 5.0 dataset (Pradhan et al.,
2012) includes texts from five different text
genres: broadcast conversation (200k), broad-
cast news (200k), magazine (120k), newswire
(625k), and web data (300k). This dataset is an-
notated with 18 fine grained NE categories. Fol-
lowing (Nothman, 2008), we applied the proce-
dure for mapping annotations to the CONLL tag
set. We used the CONLL 2012 (Pradhan et al.,
2013) standard test set for evaluation.

WGOLD WikiGold (Balasuriya et al., 2009) is a
set of Wikipedia articles (40k tokens) manually
annotated with CONLL-2003 NE classes. The
articles were randomly selected from a 2008 En-
glish dump and cover a number of topics.

WEB Ratinov and Roth (2009) annotated 20 web
pages (8k tokens) on different topics with the
CONLL-2003 tag set.

TWEET Ritter et al. (2011) annotated 2400 tweets
(comprising 34k tokens) with 10 named-entity
classes, which we mapped to the CONLL-2003
NE classes.
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4.2 Metrics

Since we use many test sets in this work, we
are confronted with a number of inconsistencies.
One is the definition of the MISC class, which
differs from a dataset to another, in addition to
not being annotated in MUC. This led us to re-
port token-level F1 score for 3 classes only (LOC,
ORG and PER). We computed this metric with the
conlleval script.4

We further report ODF1, a score that measures
how well a named-entity recognizer performs on
out-domain material. We compute it by randomly
sampling 500 sentences5 for each out-domain test
set, on which we measure the token-level F1.
Sampling the same number of sentences per test
set allows to weight each corpus equally. This pro-
cess is repeated 10 times, and we report the aver-
age over those 10 folds. On average, the newly as-
sembled test set contains 50k tokens and roughly
3.5k entity mentions. We excluded the CONLL-
2003 test set from the computation since this cor-
pus is in-domain6 (see section 5.2).

4.3 Reference systems

We chose two feature-based models: the
StanfordNER (Finkel et al., 2005) CRF clas-
sifier, and the perceptron-based Illinois NE
Tagger (Ratinov and Roth, 2009). Those systems
have been shown to yield good performance over-
all. Both systems use handcrafted features; the lat-
ter includes gazetteer features as well.

We also deployed two neural network systems:
the one of (Collobert et al., 2011), as implemented
by Attardi (2015), and the LSTM-CRF system of
Lample et al. (2016). Both systems capitalize on
representations learnt from large quantities of un-
labeled text7. We use the default configuration for
each system.

5 Evaluation of WiNER

5.1 Other Wikipedia-based corpora

We compare WiNER to existing Wikipedia-based
annotated corpora. Nothman et al. (2008) re-
leased two versions of their corpus, WP2 and
WP3, each containing 3.5 million tokens. Both

4http://www.cnts.ua.ac.be/conll2000/
chunking/conlleval.txt

5The smallest test set has 617 sentences.
6Figures including this test set do not change drastically

from what we observe hereafter.
7We use the pre-trained representations.

versions enrich the annotations deduced from an-
chored strings in Wikipedia by identifying coref-
erences among NE mentions. They differ by the
rules used to conduct coreference resolution. We
randomly generated 10 equally-sized subsets of
WiNER (of 3.5 million tokens each). On each
subset, we trained the Illinois NER tagger
and compared the performances obtained on the
CONLL test set by the resulting models, compared
to those trained on WP2 and WP3. Phrase-level F1
score are reported in Table 2. We also report the
results published in (Al-Rfou et al., 2015) with the
Polyglot corpus, which is unfortunately not avail-
able.

with MISC w/o MISC
WP2 68.2 72.8
WP3 68.3 72.9

Polyglot - 71.3
WiNER 71.2 [70.3,71.6] 74.5 [73.4,75.2]

Table 2: Performance of the Illinois toolkit
on CONLL, as a function of the Wikipedia-based
training material used. The figures on the last line
are averaged over the 10 subsets of WiNER we
randomly sampled. Bracketed figures indicate the
minimum and maximum values.

Using WiNER as a source of annotations sys-
tematically leads to better performance, which val-
idates the approach we described in Section 3.
Note that in order to generate WP2 and WP3, the
authors applied filtering rules that are responsible
for the loss of 60% of the annotations. Al-Rfou
et al. (2015) also perform sentence selection. We
have no such heuristics here, but we still observe
a competitive performance. This is a satisfactory
result considering that WiNER is much larger.

5.2 Cross-domain evaluation
In this experiment, we conduct a cross-domain
evaluation of the reference systems described in
Section 4.3 on the six different test sets presented
in Section 4.1. Following a common trend in the
field, we evaluate the performance of those sys-
tems when they are trained on the CONLL mate-
rial. We also consider systems trained on CONLL

plus a subset of WiNER. We report results ob-
tained with a subset of randomly chosen sentences
summing up to 3 million tokens, as well as a vari-
ant where we use as much as possible of the train-
ing material available in WiNER. Larger datasets
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CONLL ONTO MUC TWEET WEB WGOLD ODF1

CRF
CONLL 91.6 70.2 80.3 38.7 61.9 68.4 67.0
+WiNER(3M) - - - - - - -
+WiNER(1M) 89.3 (-2.4) 71.8 (+1.7) 78.6 (-1.8) 49.2 (+10.5) 63.0 (+1.1) 69.1 (+0.8) 69.2(+2.2)
Illinois
CONLL 92.6 71.9 84.1 44.9 57.0 71.4 68.3
+WiNER(3M) 85.5 (-6.9) 71.4 (-0.5) 76.2 (-7.9) 51.1 (+6.2) 65.5 (+8.5) 71.8 (+0.4) 69.5(+1.2)
+WiNER(30M) 82.0 (-10.6) 71.6 (-0.3) 75.6 (-8.5) 52.2 (+7.3) 63.3 (+6.3) 71.6 (+0.3) 69.0(+0.7)
Senna
CONLL 90.3 68.8 73.2 36.7 58.6 70.0 64.3
+WiNER(3M) 86.6 (-3.7) 70.1 (+1.3) 73.9 (+0.7) 43.2 (+6.4) 62.6 (+4.0) 69.9 (-0.1) 67.0(+2.7)
+WiNER(7M) 86.8 (-3.5) 70.0 (+1.2) 72.9 (-0.4) 44.8 (+8.1) 61.5 (+2.9) 69.3 (-0.7) 66.2(+1.9)
LSTM-CRF
CONLL 92.3 71.3 76.6 36.7 57.4 68.0 65.0
+WiNER(3M) 91.5 (-0.8) 74.7 (+3.4) 84.7 (+8.1) 48.1 (+11.4) 62.7 (+5.2) 73.2 (+5.2) 72.0 (+7.0)
+WiNER(5M) 91.1 (-1.2) 76.6 (+5.3) 84.0 (+7.4) 48.4 (+11.7) 64.4 (+7.0) 74.3 (+6.4) 73.0 (+8.0)

Table 3: Cross-domain evaluation of NER systems trained on different mixes of CONLL and WiNER.
Figures are token-level F1 score on 3 classes, while figures in parentheses indicate absolute gains over the
configuration using only the CONLL training material. Bold figures highlight column-wise best results.

were created by randomly appending material to
smaller ones. Datasets were chosen once (no
cross-validation, as that would have required too
much time for some models). Moreover, for the
comparison to be meaningful, each model was
trained on the same 3M dataset. The results are
reported in Table 3.

First, we observe the best overall performance
with the LSTM-CRF system (73% ODF1), the sec-
ond best system being a variant of the Illinois
system (69.5% ODF1). We also observe that the
former system is the one that benefits the most
from WiNER (an absolute gain of 8% in ODF1).
This may be attributed to the fact that this model
can explore the context on both sides of a word
with (at least in theory) no limit on the context
size considered. Still, it is outperformed by the
Illinois system on the WEB and the TWEET

test sets. Arguably, those two test sets have a NE
distribution which differs greatly from the training
material.

Second, on the CONLL setting, our results are
satisfyingly similar to those reported in (Ratinov
and Roth, 2009) and (Lample et al., 2016). The
former reports 91.06 phrasal-level F1 score on 4
classes, while our score is 90.8 .The latter re-
ports an F1 score of 90.94 while we have 90.76.
The best results reported far on the CONLL set-
ting are those of (Chiu and Nichols, 2016) with
a BiLSTM-CNN model, and a phrasal-level F1
score of 91.62 on 4 classes. So while the models

we tested are slightly behind on CONLL, they def-
initely are competitive. For other tasks, the com-
parison with other studies is difficult since the per-
formance is typically reported with the full tagset.

Third, the best performances are obtained by
configurations that use WiNER, with the excep-
tion of CONLL. That this does not carry over to
CONLL confirms the observations made by sev-
eral authors (Finkel et al., 2005; Al-Rfou et al.,
2015), who highlight the specificity of CONLL’s
annotation guidelines as well as the very nature of
the annotated text, where sport teams are overrep-
resented. These teams add to the confusion be-
cause they are often referred to with a city name.
We observe that, on CONLL, the LSTM-CRF
model is the one that registers the lowest drop
in performance. The drop is also modest for the
CRF model. The WiNER’s impact is particularly
observable on TWEET (an absolute gain of 8.8
points) and WEB (a gain of 5.5), again two very
different test sets. This suggests that WiNER helps
models to generalize.

Last, we observe that systems differ in their
ability to exploit large training sets. For the
two feature-based models we tested, the bottle-
neck is memory. We did train models with less
features, but with a significantly lower perfor-
mance. With the CRF model, we could only di-
gest a subset of WiNER of 1 million tokens, while
Illinois could handle 30 times more. As far
as neural network systems are concerned, the is-
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sue is training time. On the computer we used for
this work — a Linux cluster equipped with a GPU
— training Senna and LSTM-CRF required over
a month each for 7 and 5 millions WiNER tokens
respectively. This prevents us from measuring the
benefit of the complete WiNER resource.

6 Scaling up to WiNER

6.1 Our 2-stage approach
Because we were not able to employ the full
WiNER corpus with the NER systems mentioned
above, we resorted to a simple method to leverage
all the annotations available in the corpus. It con-
sists in decoupling the segmentation of NEs in a
sentence — we leave this to a reference NER sys-
tem — from their labelling, for which we train a
local classifier based on contextual features com-
puted from WiNER. Decoupling the two decision
processes is not exactly satisfying, but allows us
to scale very efficiently to the full size of WiNER,
our main motivation here.

6.1.1 Contextual representations
Our classifier exploits a small number of features

computed from two representations of WiNER. In
one of them, each named-entity is bounded by a
beginning and end token tags — both encoding its
type — as illustrated on line MIX of Figure 3. In
the second representation, the words of the named-
entity are replaced with its type, as illustrated on
line CONT. The former representation encodes in-
formation from both the context and the the words
of the segment we wish to label while the second
one only encodes the context of a segment.

WiNER [Gonzales]PER will be featured on [Daft
Punk]MISC .

MIX 〈B-PER〉 Gonzales 〈L-PER〉 will be featured
on 〈B-MISC〉 Daft Punk 〈L-MISC〉

CONT 〈PER〉 will be featured on 〈MISC〉 .

Figure 3: Two representations of WiNER’s anno-
tation used for feature extraction.

With each representation, we train a 6-gram
backoff language model using kenLM (Heafield
et al., 2013). For the MIX one, we also train word
embeddings of dimension 50 using Glove (Pen-
nington et al., 2014).8 Thus, we have the embed-

8We used a window size of 5 in this work.

dings of plain words, as well as those of token tags.
The language and embedding models are used to
provide features to our classifier.

6.1.2 Features
Given a sentence and its hypothesized segmenta-
tion into named-entities (as provided by another
NER system), we compute with the Viterbi al-
gorithm the sequence of token tags that leads to
the smallest perplexity according to each language
model. Given this sequence, we modify the tag-
ging of each segment in turn, leading to a total of
4 perplexity values per segment and per language
model. We normalize those perplexity values so as
to interpret them as probabilities. Table 4 shows
the probability given by both language models to
the segment Gonzales of the sentence of our run-
ning example. We observe that both models agree
that the segment should be labelled PER. We also
generate features thanks to the embedding model.
This time, however, this is done without consid-
ering the context: we represent a segment as the
sum of the representation of its words. We then
compute the cosine similarity between this seg-
ment representation and that of each of the 4 pos-
sible tag pairs (the sum of the representation of the
begin and end tags); leading to 4 similarity scores
per segment. Those similarities are reported on
line EMB in Table 4.

LOC MISC ORG PER

CONT 0.11 0.35 0.06 0.48
MIX 0.26 0.19 0.18 0.37
EMB 0.39 0.23 0.258 0.46

Table 4: Features for the segment Gonzales in the
sentence Gonzales will be featured on Daft Punk.

To these 4 scores provided by each model, we
add 16 binary features that encode the rank of each
token tag according to one model (does 〈tag〉 have
rank 〈i〉 ?). We also compute the score difference
given by a model to any two possible tag pairs,
leading to 6 more scores. Since we have 3 models,
we end up with 78 features.

6.1.3 Training
We use scikit-learn (Pedregosa et al., 2011)
to train a Random Forest classifier9 on the
29k mentions of the CONLL training data. We

9We tried other algorithms provided by the platform with
less success.
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adopted this training material to ensure a fair
comparison with other systems that are typically
trained on this dataset. Another possibility would
be to split WiNER into two parts, one for com-
puting features, and the other for training the clas-
sifier. We leave this investigation as future work.
Because of the small feature set we have, training
such a classifier is very fast.

6.2 Results

We measure the usefulness of the complete
WiNER resource by varying the size of the train-
ing material of both language models and word
embeddings, from 5M tokens (the maximum size
the LSTM-CRF mode could process) to the full
WiNER resource size.

CO ON MU TW WE WG ODF1

5M 84.3 72.0 78.7 39.8 61.9 70.2 68.1
50M 86.8 75.6 82.3 44.9 64.7 73.8 71.7

500M 88.9 76.2 84.8 45.8 66.6 75.5 74.1
All 90.5 76.9 85.9 46.6 65.3 77.0 74.7

Table 5: Influence of the portion of WiNER
used in our 2-stage approach for the CONLL

test set, using the segmentation produced by
LSTM-CRF+WiNER(5M). These results have to
be contrasted with the last line of Table 3.

To this end, we provide the performance of
our 2-stage approach on CONLL, using the seg-
mentation output by LSTM-CRF+WiNER(5M) 10.
Results are reported in Table 5. As expected,
we observe that computing features on the same
WiNER(5M) dataset exploited by LSTM-CRF
leads to a notable loss overall (ODF1 of 68.1 ver-
sus 73.0), while still outperforming LSTM-CRF
trained on CONLL only (ODF1 of 65.0). More
interestingly, we observe that for all test sets,
using more of WiNER leads to better perfor-
mance, even if a plateau effect emerges. Our
approach does improve systematically across all
test sets by considering 100 times more WiNER
data than what LSTM-CRF can handle in our
case. Using all of WiNER leads to an ODF1 score
of 74.7, an increase of 1.7 absolute points over
LSTM-CRF+WiNER(5M).

Table 6 reports the improvements in ODF1 of
our 2-stage approach (RF), which uses all of

10The best configuration according to Table 3.

Native RF
CRF

CONLL 67.0 73.6 (+6.6)
+WiNER(3M) - -
+WiNER(1M) 69.2 73.0 (+2.8)
Illinois

CONLL 68.3 74.4 (+6.1)
+WiNER(3M) 69.5 74.2 (+4.7)
+WiNER(30M) 69.0 74.3 (+4.3)

Senna
CONLL 64.3 70.1 (+5.8)
+WiNER(3M) 67.0 70.8 (+3.8)
+WiNER(7M) 66.2 72.0 (+5.8)
LSTM-CRF

CONLL 65.0 69.7 (+4.7)
+WiNER(3M) 72.0 74.8 (+2.8)
+WiNER(5M) 73.0 74.7 (+1.7)

Table 6: ODF1 score of native configurations, and
of our two-stage approach (RF) which exploits the
full WiNER corpus. Figures in parenthesis indi-
cate absolute gains over the native configuration.

the WiNER material and the segmentation pro-
duced by several native systems. Applying our
2-stage approach systematically improves the per-
formance of the native configuration. Gains are
larger for native configurations that cannot exploit
a large quantity of WiNER. We also observe that
the 2-stage approach delivers roughly the same
level of performance (ODF1 ' 74) when using the
segmentation produced by the Illinois or the
LSTM-CRF systems.

7 Error Analysis

Table 7 indicates the number of disagreements
between the LSTM-CRF+WiNER(5M) system
(columns) and the 2-stage approach (rows). The
table also shows the percentage of times the lat-
ter system was correct. For instance, the bottom
left cell indicates that, on 38 distinct occasions, the
classifier changed the tag PER proposed by the na-
tive system to ORG and that is was right in 85% of
these occasions. We exclude errors made by both
systems, which explains the low counts observed
(1.7% is the absolute difference between the two
approaches).

We observe that in most cases the classifier
makes the right decision when an entity tag is
changed from PER to either LOC or ORG (86% and
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PER LOC ORG

PER - 50% [12] 25% [12]
LOC 86% [20] - 21% [28]
ORG 85% [38] 81% [19] -

Table 7: Percentage of correctness of the 2-
stage system (rows) when tagging a named-entity
differently than the LSTM-CRF+WiNER(5M)
(columns). Bracketed figures indicate the aver-
age number of differences over the out-domain test
sets.

85% respectively). Most often, re-classified enti-
ties are ambiguous ones. Our approach chooses
correctly mostly by examining the context of the
mention. For instance, the entity Olin in example
(a) of Figure 4 is commonly known as a last name.
It was correctly re-classified as ORG thanks to its
surrounding context. Replacing its by his in the
sentence makes the classifier tag the entity as PER.
Similarly, the entity Piedmont in example (b) was
re-classified as ORG, although it is mostly used as
the region name (even in Wikipedia), thanks to the
context-based CONT and MIX features that identify
the entity as ORG (0.61 and 0.63 respectively).

(a) . . . would give [Olin]PER→ORG access to its pro-
duction processes . . .

(b) Wall Street traders said [Piedmont]LOC→ORG

shares fell partly . . .

(c) ? . . . performed as a tenor at New York City ’s
[Carnegie Hall]ORG→LOC.

Figure 4: Example of entities re-classified by our
2-stage approach.

Misclassification errors do occur, especially
when the native system tagged an entity as ORG.
In such cases, the classifier is often misled by a
strong signal emerging from one family of fea-
tures. For instance, in example (c) of Figure 4,
both MIX — p(ORG) = 0.39 vs. p(LOC) = 0.33
— and EMB — p(ORG) = 0.39 vs. p(LOC) =
0.38 — features are suggesting that the entity
should be tagged as LOC, but the CONT signal —
p(LOC) = 0.63 vs. p(ORG) = 0.1 — strongly
impacts the final decision. This was to be ex-
pected considering the simplicity of our classifier,
and leaves room for further improvements.

8 Conclusion and Future Work

We revisited the task of using Wikipedia for
generating annotated data suitable for training
NER systems. We significantly extended the
number of annotations of non anchored strings,
thanks to coreference information and an analysis
of the Wikipedia’s link structure. We applied
our approach to a dump of English Wikipedia
from 2013, leading to WiNER, a corpus which
surpasses other similar corpora, both in terms of
quantity and of annotation quality. We evaluated
the impact of our corpus on 4 reference NER
systems with 6 different NER benchmarks. The
LTSM-CRF system of (Lample et al., 2016)
seems to be the one that benefits the most from
WiNER overall. Still, shortage of memory or
lengthy training times prevent us from measur-
ing the full potential of our corpus. Thus, we
proposed an entity-type classifier that exploits
a set of features computed over an arbitrary
large part of WiNER. Using this classifier for
labelling the types of segments identified by
a reference NER system yields a 2-stage pro-
cess that further improves overall performance.
WiNER and the classifier we trained are available
at http://rali.iro.umontreal.ca/
rali/en/winer-wikipedia-for-ner.
As future work, we want to study the usefulness
of WiNER on a fine-grained entity type task, pos-
sibly revisiting the simple classifier we resorted
to in this work, and testing its benefits for other
currently successful models.
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Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable Modified
Kneser-Ney Language Model Estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for Named Entity Recognition.
arXiv preprint arXiv:1603.01360.

Joel Nothman. 2008. Learning named entity recogni-
tion from Wikipedia. Ph.D. thesis, The University of
Sydney Australia 7.

Joel Nothman, James R Curran, and Tara Murphy.
2008. Transforming Wikipedia into named entity
training data. In Proceedings of the Australian Lan-
guage Technology Workshop, pages 124–132.

Kezban Dilek Onal and Pinar Karagoz. 2015. Named
entity recognition from scratch on social media. In
ECML-PKDD, MUSE Workshop.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word
Representation. In EMNLP, volume 14, pages
1532–1543.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards
Robust Linguistic Analysis using OntoNotes. In
CoNLL, pages 143–152.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL-Shared Task, pages 1–
40.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147–
155. Association for Computational Linguistics.

Alexander E. Richman and Patrick Schone. 2004. Min-
ing Wiki Resources for Multilingual Named Entity
Recognition In proceedings. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1–9.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named Entity Recognition in Tweets: An Ex-
perimental Study. In EMNLP.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

A. Toral and R. Munoz. 2006. A proposal to automati-
cally build and maintain gazetteers for Named Entity
Recognition by using Wikipedia. In Proceedings of
the EACL-2006 Workshop on New Text: Wikis and
blogs and other dynamic text sourcesEACL Workhop
on NEW TEXT-Wikis and blogs and ther dynamic
text sources, pages 56–61.

422


