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Abstract

In this paper, we extend Recurrent Neural
Network Language Models (RNN-LMs)
with an attention mechanism. We show
that an Attentive RNN-LM (with 14.5M
parameters) achieves a better perplexity
than larger RNN-LMs (with 66M param-
eters) and achieves performance compa-
rable to an ensemble of 10 similar sized
RNN-LMs. We also show that an Attentive
RNN-LM needs less contextual informa-
tion to achieve similar results to the state-
of-the-art on the wikitext2 dataset.

1 Introduction

Language Models (LMs) are an essential compo-
nent in a range of Natural Language Processing
applications, such as Statistical Machine Trans-
lation and Speech Recognition (Schwenk et al.,
2012). An LM provides a probability for a se-
quence of words in a given language, reflecting
fluency and the likelihood of that word sequence
occurring in that language.

In recent years Recurrent Neural Networks
(RNNs) have improved the state-of-the-art in LM
research (Józefowicz et al., 2016). Sequential data
prediction, however, is still considered a challenge
in Artificial Intelligence (Mikolov et al., 2010)
given that, in general, prediction accuracy de-
grades as the size of sequences increase.

RNN-LMs sequentially propagate forward a
context vector by integrating the information gen-
erated by each prediction step into the context used
for the next prediction. One consequence of this
forward propagation of information is that older
information tends to fade from the context as new
information is integrated into the context. As a re-
sult, RNN-LMs struggle in situations where there
is a long-distance dependency because the relevant

information from the start of the dependency has
faded by the time the model has spanned the de-
pendency. A second problem is that the context
can be dominated by the more recent information
so when an RNN-LM does make an error this error
can be propagated forward resulting in a cascade
of errors through the rest of the sequence.

In recent sequence-to-sequence research the
concept of “attention” has been developed to en-
able RNNs to align different parts of the input and
output sequences. Examples of attention based
architectures include Neural Machine Translation
(NMT) (Bahdanau et al., 2015; Luong et al., 2015)
and image captioning (Xu et al., 2015).

In this paper we extend the RNN-LM context
mechanism with an attention mechanism that en-
ables the model to bring forward context infor-
mation from different points in the context se-
quence history. We hypothesis that this atten-
tion mechanism enables RNN-LMs to: (a) bridge
long-distance dependencies, thereby avoiding er-
rors; and, (b) to overlook recent errors by choos-
ing to focus on contextual information preceding
the error, thereby avoiding error propagation.

We show that a medium sized1 Attentive RNN-
LM2 achieves better performance than larger
“standard” models and performance comparable
to an ensemble of 10 “medium” sized LSTM
RNN-LMs on the PTB. We also show that an At-
tentive RNN-LM needs less contextual informa-
tion in order to achieve similar results to state-of-
the-art results over the wikitext2 dataset.

Outline: §2 introduces RNN-LMs and related
research, §3 outlines our approach, §4 describes
our experiments, §5 presents our analysis of the
models‘ performance and §6 our conclusions.

1We adopt the terminology of Zaremba et al. (2015) and
Press and Wolf (2016) when referring to the size of the RNNs.

2Code available at https://github.com/
giancds/attentive_lm
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2 RNN-Language Models

RNN-LMs model the probability of a sequence of
words by modelling the joint probability of the
words in the sequence using the chain rule:

p(w1, . . . , wN ) =
N∏

t=1

p(wn|w1, . . . , wn−1) (1)

where N is the number of words in the sequence.
The context of the word sequence is modelled by
an RNN and for each position in the sequence
the probability distribution over the vocabulary is
calculated using a softmax on the output related
to that position of the RNN‘s last layer (i.e., the
last layer‘s hidden state) (Józefowicz et al., 2016).
Examples of such models include Zaremba et al.
(2015) and Press and Wolf (2016). These mod-
els are composed of LSTM units (Hochreiter and
Schmidhuber, 1997) and apply regularization to
improve the RNN performance. In addition, Press
and Wolf (2016) also uses the same embedding
matrix that is used to transform the input words to
transform the output of the last RNN layer to feed
it to the softmax layer to make the next prediction.

Attention mechanisms were first proposed in
“encoder-decoder” architectures for NMT sys-
tems. Bahdanau et al. (2015) proposed a model
that stores all the encoder RNN’s outputs and uses
them together with the decoder RNN’s state ht−1

to compute a context vector that, in turn, is used
to compute the state ht. In Luong et al. (2015)
a generalization of the model of Bahdanau et al.
(2015) is presented which uses the decoder RNN‘s
state, in this instance ht rather than ht−1, along
with the outputs of the encoder RNN to compute
a context vector that it then concatenated with ht

before making the next prediction. Both models
have similar performance and achieve state-of-the-
art performance for some language pairs; how-
ever, they suffer from repeating words or dropping
translations at the output (Mi et al., 2016).

There is previous work on using past informa-
tion to improve RNN-LMs. Tran et al. (2016) pro-
pose an extension to LSTM cells to include mem-
ory areas, which depend on input words, at the
output of every hidden layer. The model produces
good results but the dependency on input words
expands the number of parameters in each LSTM
cell in proportion to the vocabulary size in use.

Similarly, Cheng et al. (2016) propose storing
the LSTM‘s memory cells of every layer at each
timestep and draw a context vector for each mem-
ory cell for each new input to attend to previous
content and compute its output. Although their
model requires fewer parameters than the model of
Tran et al. (2016), the performance of the model is
worse than regularized “standard” RNN-LM as in
Zaremba et al. (2015) and Press and Wolf (2016).

Daniluk et al. (2017) propose an augmented ver-
sion of the attention mechanism proposed by Bah-
danau et al. (2015) on which their model outputs 3
vectors called key-value-predict. The key (a vector
of real numbers) is used to retrieve a single hidden
state from the past. Grave et al. (2017) propose an
LM augmented with a “memory cache” that stores
tuples of hidden-states plus word embeddings (for
the word predicted from that hidden state). The
memory cache is used to help the current predic-
tion by retrieving the word embedding associated
with the hidden state in the memory most similar
to the current hidden state. Merity et al. (2017)
proposed a mixture model that includes an RNN
and a pointer network. This model computes one
distribution for the softmax component and one
distribution for the pointer network, using a sen-
tinel gating function to combine both distributions.
In spite of the fact that their model is similar to the
model of Grave et al. (2017), their model requires
an extra transformation between the current state
of the RNN and those stored in the memory.

These recent models have a number of draw-
backs. The systems that extend the architecture of
LSTM units struggle to process large vocabularies
because the system memory expands to the size of
the vocabulary. For systems that retrieve a single
hidden-state or word from memory, if the predic-
tion is not correct, the RNN-LM will not receive
the correct past information. Finally, the models
of Merity et al. (2017) and Grave et al. (2017)
use a fixed-length memory of L previous hidden
states to store and retrieve information from the
past (100 states in the case of Merity et al. (2017)
and 2,000 states in the case of Grave et al. (2017)).
As we shall explain in §3 our “attentive” RNN-
LMs have a memory of dynamic-length that grows
with the length of the input and therefore, in gen-
eral, are computationally cheaper.

We see our “attentive” RNN-LM (see §3) as a
generalized version of these models as we rely on
the encoded information in the hidden state of the
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RNN-LM to represent previous input words and
we use a set of attention weights (instead of a
key) to retrieve information from the past inputs.
The main advantages of our approach are: (a) our
model does not need vocabulary sized matrices
in the computations of the attention mechanism
and therefore has a reduced number of parame-
ters; and (b) as we use all previous hidden states
of the RNN-LM in the computation for the atten-
tion weights, all of those states will influence the
next prediction based on the weights calculated.

3 Attentive Language Models

In this work we extend RNN-LMs to include an at-
tention mechanism over previous inputs. We em-
ploy a multi-layered RNN to encode the input and,
at each timestep, we store the output of the last re-
current layer (i.e., its hidden state ht) into a mem-
ory buffer. We compute a score for each hidden
state hi (∀ i ∈ {1, . . . , t − 1}) stored in memory
and use these scores to weight each hi. From these
weighted hidden states we generate a context vec-
tor ct that is concatenated with the current hidden
state ht to predict the next word in the sequence.
Figure 1 illustrates a step of our model when pre-
dicting the fourth word in a sequence.

We propose two different attention score func-
tions that can be used to compute the context
vector ct. One calculates the attention score of
each hi using just the information in the state
(the single(hi) score introduced below). The
other calculates the attention scores for each hi

by combining the information from that state with
the information from the current state ht (the
combined(hi,ht) score described below). Each
of these mechanisms defines a separate Attentive
RNN-LMs and we report results for each of these
LMs in our experiments.

More formally, each ht is computed as follows,
where xt is the input at timestep t:

ht = RNN(xt,ht−1) (2)

The context vector ct is then generated using
Eq. (3) where each scalar weight ai is a softmax
(Eq. (4)) and the score for each hidden state (hi)
in the memory buffer is one of Eq. (5) or Eq. (6).

ct =
t−1∑
i=1

aihi (3)

Figure 1: Illustration of a step of the Attentive
RNN-LM with combined score. In this example,
the model receives the third word as input (w3) af-
ter storing the previous states (h1 and h2) in mem-
ory. After producing h3, the model computes the
context vector (in this case c3) that will be con-
catenated to h3 before the softmax layer for the
prediction of the fourth word w4. Note that if the
single score is in use (Eq. (9)), the arrow from
the RNN output for h3 to the attention layer is
dropped. Also note that h3 is stored in memory
only at the end of this process.

ai =
exp(score(hi,ht))∑t−1

j=1 exp(score(hj ,ht))
(4)

score(hi,ht) =
{

single(hi) (5)

combined(hi,ht) (6)

We then merge ct with the current state ht using
a concatenation layer3, where Wc is a matrix of
parameters and bt is a bias vector.

h′t = tanh(Wc[ht; ct] + bt) (7)

We compute the next word probability using
Eq.8 where W is a matrix of parameters and b
is a bias vector.

3We also have experimented with using a dot product and
a feedforward layer to combine ht and ct and also using only
ct, but those results were far below previous work in RNN-
LM so we do not report them here.
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p(wt|w<t, x) = softmax(Wh′t + b) (8)

Single score. This score is calculated for each
hi using just the information stored the state in it-
self. The score single(hi) is defined as

single(hi) = vs � tanh(Wshi) (9)

where the parameter matrix Ws and vector vs are
both learned by the attention mechanism and �
represents the dot product.

When applying the single(hi) score, we can
think of the score ai as a scalar summary of the
“absolute relevance” of the state hi. When a new
state ht is added to the buffer its scalar summary
ai is calculated by first using Eq.9 to get the score
for the state and then applying a softmax func-
tion over the set of state scores including the score
for the new state. Although the scores for each
state do not change from one timestep to the next,
applying the softmax results in recalculation of
the distribution of the scalar summaries for all the
states h0, . . . ,ht. As a result the ai’s for each state
in Eq.3 changes from one prediction to the next as
new states are added and the weight mass is dis-
tributed across more states.

Combined score. This score is calculated for
each hi by combining the information from that
state with the information from the current state
ht. The score combined(hi,ht) is defined as

combined(hi,ht) = vs � tanh(Wshi + Wqht)
(10)

where the parameter matrices Ws and Wq and
vector vs are learned by the attention mechanism,
and � is the same as in Eq. 9. Notice that because
Wqht does not depend on any other state and is
used in the computations with all other hi, we can
efficiently compute it once and use the results in
Eq. 10, thus reducing computation time.

The score ai defined by combined(hi,ht), can
be understood as the “relative relevance” of state
hi to the current state ht. Using this attention
mechanism the score for each hi is different for
each timestep according to its relevance to the cur-
rent hidden state ht of the RNN. Consequently, the

scores for each hi and the distribution over these
scores changes from one timestep to the next. Us-
ing this scoring, the model can decide whether it
should pay more attention to the current state, to
a previous state or use past states to “supplement”
the information for the next prediction. In §5 we
present and analysis of how the model attends to
different parts of its history as it generates a se-
quence of predictions.

4 Experiments

To evaluate our Attentive RNN-LMs we conducted
experiments over the PTB (Marcus et al., 1994)
and wikitext2 (Merity et al., 2017) datasets. We
first describe the setup of our Attentive RNN-LM
for the PTB (§4.1) and wikitext2 (§4.2) datasets
and then discuss the results (§4.3). We com-
pare our results on PTB to Zaremba et al. (2015)
and Press and Wolf (2016) the best performing
LSTM-LMs on the PTB, two memory augmented
networks (Grave et al. (2017) and Merity et al.
(2017)) and PTB state-of-the-art ensemble mod-
els of Zaremba et al. (2015). On wikitext2 we take
(Merity et al., 2017), the creators of the dataset,
and (Grave et al., 2017), the current state-of-the-
art, as our baselines.

4.1 PTB Setup

We evaluate our Attentive RNN-LM over the PTB
dataset using the standard split which consists of
887K, 70K and 78K tokens on the training, vali-
dation and test sets respectively.

We follow, in part, the parameterization used
by Zaremba et al. (2015) and Press and Wolf
(2016) with some changes. We trained an Atten-
tive RNN-LM with 2 layers of 650 LSTM units
using Stochastic Gradient Descent (SGD) with an
initial learning rate of 1.0, halving the learning rate
at each epoch after 12 epochs, to minimize the av-
erage negative log probability of the target words.

We train the models until we do not get any per-
plexity improvements over the validation set with
an early stop counter of 10 epochs (i.e., patience of
10 epochs). Once the model runs out of patience,
we rollback its parameters and use the model that
achieved the best validation perplexity to calcu-
late the perplexity over the test set. We initialize
the weight matrices of the network uniformly in
[−0.05, 0.05] while all biases are initialized to a
constant value at 0.0. We also apply 50% dropout
(Srivastava et al., 2014) to the non-recurrent con-
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nections and clip the norm of the gradients, nor-
malized by mini-batch size, at 5.0. In all our ex-
periments, we follow Press and Wolf (2016) and
tie the matrix W in Eq. (8) to be the embedding
matrix (which also has 650 dimensions) used to
represent the input words.

Contrary to Zaremba et al. (2015) and Press and
Wolf (2016), we do not allow successive mini-
batches to sequentially traverse the dataset. In
other words, we follow the standard practice to
reinitialize the hidden state of the network at the
beginning of each mini-batch, by setting it to all
zeros. This way, we do not allow the attention
window to span across sentence boundaries4. We
use all sentences in the training set, we truncate
all sentences longer than 35 words and pad all sen-
tences shorter than 35 words with a special symbol
so all sentences are the same size. We use a vo-
cabulary size of 10K words and a batch size of 32.
All UNK words (following the pre-processing of
(2015)) were kept during the training, validation
and testing phases.

4.2 wikitext2 Setup

We also evaluate our Attentive RNN-LM over the
wikitext2 dataset (Merity et al., 2017). We use the
standard train, validation and test splits which con-
sists of around 2M, 217K tokens and 245k tokens
respectively. This dataset is composed of “Good”
and “Featured” articles on Wikipedia.

There is an important difference between how
we trained and tested our models on the wiki-
text2 dataset and how the baseline systems were
trained and tested. Both Merity et al. (2017) and
Grave et al. (2017) permitted the memory buffers
of their systems to span sentence boundaries (and,
indeed, they also did mini-batch traversal which
allowed the memory buffers to traverse mini-batch
boundaries) whereas we reset our systems mem-
ory at each sentence boundary. This difference
is important because in the wikitext2 dataset the
sentences are not shuffled and, therefore, are se-
quentially related to each other. As a result, sys-
tems that carry sequential information from pre-
vious sentences into the current sentence have an
advantage in that they utilise contextual cues from
the preceding sentence to inform the predictions
at the start of the new sentence. By compari-

4We also experimented to with successive mini-batches to
sequentially traverse the dataset as in Zaremba et al. (2015)
but the performance of the model dropped considerably so we
do not report those results here.

son, systems that reset their memory at the start of
each sentence must reconstruct their context mod-
els from scratch and face a “cold-start” problem
for the early predictions in the sentence.

The core reason why (Merity et al., 2017) and
(Grave et al., 2017) did not reset their memo-
ries across sentence boundaries and we do is that
these baseline systems use a fixed length memory
whereas our “attention” mechanism has a variable
length memory. A variable length memory has
benefits in terms of both computational cost and
the fact that the memory size is dynamically fitted
to the context. However, just as the system de-
signer for a fixed length memory LM must fix the
memory size hyper-parameter in some fashion, so
to the designer of a variable length memory LM
must decide when the memory buffer is reset. For
our work, we have decided to reset our memory
buffer at sentence boundaries because many of the
tasks for which LMs are used (e.g. NMT) work on
a sentence by sentence basis. If required it would
be possible for us to extend the memory buffer to
the start of the preceding sentence (or some other
landmark is the sequence history). However, this
would incur extra computational cost, and as we
shall see our Attentive RNN-LMs are still compet-
itive on the wikitext2 dataset despite the fact that
the baselines systems are given access to longer
context sequences.

We trained an Attentive RNN-LM with 2 lay-
ers of 1000 LSTM units using Stochastic Gradient
Descent (SGD) with an initial learning rate of 1.0,
decaying the learning rate by a factor of 1.15 at
each epoch after 14 epochs, to minimize the aver-
age negative log probability of the target words.

Similarly to the PTB model we also train this
model with an early stop counter of 10 epochs
and we initialize the weight matrices of the net-
work uniformly in [−0.05, 0.05] while all biases
are initialized to a constant value at 0.0. We apply
65% dropout to the non-recurrent connections and
clip the norm of the gradients, normalized by mini-
batch size, at 5.0. In all our experiments, we also
follow Press and Wolf (2016) and tie the matrix
W in Eq. (8) to be the embedding matrix (which
has 1000 dimensions for this model) used to rep-
resent the input words. We use all sentences in
the training set, we truncate all sentences longer
than 35 words and pad all sentences shorter than
35 words with a special symbol so all sentences
are the same length. We use a vocabulary size of

445



33,278 and a batch size of 32. All UNK words
(following the pre-processing of (2017)) were kept
during the training, validation and testing phases.

4.3 Results
In Table 1 we report the results of our experiments
on the PTB dataset. As we can see in this table,
the Attentive RNN-LMs outperforms all other sin-
gle models on the PTB dataset. Although Atten-
tive RNN-LMs have less parameters (10M) than
the large “regularized” LSTM-LMs (66M param-
eters), they were capable of reducing the perplex-
ity over both validation and test sets. This result
shows that using an Attentive RNN-LM it is pos-
sible to achieve better perplexity scores with far
fewer model parameters. Furthermore, Attentive
RNN-LMs are able to achieve roughly the same
results as the averaging of 10 RNN-LM models
(with no attention) of the same size.

In addition, there is little difference between the
results of the Attentive RNN-LM with single score
(Eq.9) and the Attentive RNN-LM with combined
score (Eq.10) with the single score slightly outper-
forming the the combined score. We believe this
is because the model using the combined(hi,ht)
score has more parameters to optimize and, thus,
more difficulties in settling to a good local optima.

In Table 2 we report the results on the wikitext2
dataset. Despite the fact that we reset the mem-
ory for the Attentive RNN-LM at each sentence
boundary whereas the caches for the baseline sys-
tems span sentence boundaries, our best Attentive
RNN-LM is within 1 perplexity point of the sys-
tem of (2017) (which is allowed to cache 2,000
previous hidden states), and has a lower perplexity
than all of the other baselines.

5 Analysis of the Models

The purpose of our attention mechanism is to en-
able an RNN-LM to bridge long distance depen-
dencies in language. Therefore, we expect the at-
tention mechanism to select previous hidden states
that are relevant to the current predictions. To
analyse whether the attention mechanism is func-
tioning as intend we analysed the evolution of at-
tention weights in our Attentive RNN-LM as we
calculated the perplexity for samples sentences us-
ing the models trained over the wikitext25.

5The behaviour of the models on wikitext2 is similar to
that of the models trained and evaluated on the PTB dataset,
so for space reasons we only present the wikitext2 analysis
here.

Figure 2 show the evolution of attention
weights, using both single and combined scoring,
when calculating perplexities for 2 sentences con-
taining nominal modifiers. In addition, Figure 3
show the evolution of attention weights for two
sentences containing relative clauses, once again
using both single and combined scoring. The
words in the X-axis (horizontal) are the inputs at
each timestep and the words in the Y-axis (verti-
cal) are the next (or predicted) words. We sup-
pressed weights that either equal to 1.0 (black
squares) or 0.0 (white squares). Note that given
the rounding to 4 decimal places, weights in some
rows of the matrices may not sum to 1.0.

None of the attention mechanisms worked as a
proper attention mechanism. In other words, none
of the mechanisms generated larger weights for
specific words in the sentence, in comparison to
the other words in the same sentence. Compar-
ing the attention weights generated by both com-
bined score and single score for both sentences, it
is striking that the distribution of attention weights
is very similar. For both Attentive RNN-LM mod-
els the attention spreads out across the history in a
relatively equal fashion.

Indeed, both models seem to take into consid-
eration all previous states, creating a smoothing
effect for the hidden states in the buffer. There-
fore, no single state dominates the context vector
by receiving a much larger attention weight than
the others. We believe that this behaviour enables
the models to bring forward information from the
beginning of the sentence at the time it is making a
prediction. This way, the models do not let infor-
mation fade away from the context as it progresses
to subsequent steps in a sequence and all previ-
ous information about the words that preceded the
current timestep is available to the classifier in a
manner that disregards recency.

As a consequence of the smoothing effect, the
model does not necessarily need to store informa-
tion about the context of the sequence in the re-
current connections of the RNN. This behaviour
enable the model to retrieve information from the
buffer to remember past words without relying
solely on the RNN’s internal “memory”. There-
fore, the model can maximize the features ex-
tracted about an input word, creating an advantage
over other RNN-LMs that need to both extract fea-
tures and keep context regarding the sequence in
its connections.
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Model Params Valid. Set Test Set

Single Models

Medium Regularized LSTM (Zaremba et al., 2015) 20M 86.2 82.7
Large Regularized LSTM (Zaremba et al., 2015) 66M 82.2 78.4
Large + BD + WT (Press and Wolf, 2016) 51M 75.8 73.2
Neural cache model (size = 500) (Grave et al., 2017) - - 72.1
Medium Pointer Sentinel-LSTM (Merity et al., 2017) 21M 72.4 70.9
Attentive LM w/ combined score function 14.5M 72.6 70.7
Attentive LM w/ single score function 14.5M 71.7 70.1

Model Averaging

2 Medium regularized LSTMs (Zaremba et al., 2015) 40M 80.6 77.0
5 Medium regularized LSTMs (Zaremba et al., 2015) 100M 76.7 73.3
10 Medium regularized LSTMs (Zaremba et al., 2015) 200M 75.2 72.0
2 Large regularized LSTMs (Zaremba et al., 2015) 122M 76.9 73.6
10 Large regularized LSTMs (Zaremba et al., 2015) 660M 72.8 69.5
38 Large regularized LSTMs (Zaremba et al., 2015) 2508M 71.9 68.7

Table 1: Perplexity results over the PTB. Symbols: WT = weight tying (Press and Wolf, 2016); WD =
weight decay and BD = Bayesian Dropout, both suggested by Gal and Ghahramani (2015).

Model Params Valid. Set Test Set

Zoneout + Variational LSTM (Merity et al., 2017) 20M 108.7 100.9
LSTM-LM (Grave et al., 2017) - - 99.3
Variational LSTM (Merity et al., 2017) 20M 101.7 96.3
Neural cache model (size = 100) (Grave et al., 2017) - - 81.6
Pointer LSTM (window = 100) (Merity et al., 2017) 21M 84.8 80.8
Attentive LM w/ combined score function 50M 74.3 70.8
Attentive LM w/ single score function 50M 73.7 69.7
Neural cache model (size = 2000) (Grave et al., 2017) - - 68.9

Table 2: Perplexity results over the wikitext2.

Another interpretation of the smoothing effect is
that it “reinforces” the signal in a similar fashion
to residual connections in other RNNs and Deep
Neural Networks architectures. Other RNN archi-
tectures use these residual connections as a short-
cut to “reinforce” the signal of the current input
and, thus, it still considers the current input only.
The Attentive RNN-LM, however, uses all the pre-
vious hidden states to achieve a similar effect and
create a stronger signal to the softmax classifier.

6 Conclusions

This paper proposes the use of attention mecha-
nisms in RNN-LMs. These attention mechanisms
enable an RNN-LM to consider information from
its past when it is predicting the next word. We
believe that this can help the LM to overcome

the fading of relevant information as it traverses a
long-distance dependency within a sequence and
also to recover from a mistaken prediction by fo-
cusing on the context preceding the error.

Our results show that an Attentive RNN-LM
outperforms both RNN-LM models that use and
that do not use past information to predict the
next word in a sequence when trained on the
PTB dataset. Furthermore, our Attentive RNN-LM
achieves this performance using far fewer units
than the “standard” RNN-LM and, therefore, less
model parameters. Our results also show that our
Attentive RNN-LM achieves similar results to an
ensemble that averages over 10 similar sized (in
terms of number of LSTM units) RNN-LMs.

In addition, our results demonstrate that our At-
tentive RNN-LM achieves similar to state-of-the-
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art results over the wikitext2 dataset. It is an inter-
esting result given that we do not allow our model
to look beyond the boundaries of the current se-
quence it is processing, whilst the state-of-the-art
model is allowed to store 2,000 previous states in
its cache.

In future work we plan to (a) test the perfor-
mance of ensembles of Attentive RNN-LMs and
(b) to study the use of the Attentive RNN-LM as
the decoder within an NMT system.
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Figure 2: Plot of attention weights for two sentences containing nominal modifiers. On the left column
are the attention weights calculated by the combined score. On the right column are the attention weights
calculated by the single score. The words in the X-axis (horizontal) are the inputs at each timestep and
the words in the Y-axis (vertical) are the next (or predicted) words. We suppressed weights that either
equal to 1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal places,
weights in some rows of the matrices may not sum to 1.0.
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Figure 3: Plot of attention weights for two sentences containing relative clauses. On the left column are
the attention weights calculated by the combined score. On the right column are the attention weights
calculated by the single score. The words in the X-axis (horizontal) are the inputs at each timestep and
the words in the Y-axis (vertical) are the next (or predicted) words. We suppressed weights that either
equal to 1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal places,
weights in some rows of the matrices may not sum to 1.0.
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