@inproceedings{yu-jiang-2017-leveraging,
title = "Leveraging Auxiliary Tasks for Document-Level Cross-Domain Sentiment Classification",
author = "Yu, Jianfei and
Jiang, Jing",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1066/",
pages = "654--663",
abstract = "In this paper, we study domain adaptation with a state-of-the-art hierarchical neural network for document-level sentiment classification. We first design a new auxiliary task based on sentiment scores of domain-independent words. We then propose two neural network architectures to respectively induce document embeddings and sentence embeddings that work well for different domains. When these document and sentence embeddings are used for sentiment classification, we find that with both pseudo and external sentiment lexicons, our proposed methods can perform similarly to or better than several highly competitive domain adaptation methods on a benchmark dataset of product reviews."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-jiang-2017-leveraging">
<titleInfo>
<title>Leveraging Auxiliary Tasks for Document-Level Cross-Domain Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianfei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study domain adaptation with a state-of-the-art hierarchical neural network for document-level sentiment classification. We first design a new auxiliary task based on sentiment scores of domain-independent words. We then propose two neural network architectures to respectively induce document embeddings and sentence embeddings that work well for different domains. When these document and sentence embeddings are used for sentiment classification, we find that with both pseudo and external sentiment lexicons, our proposed methods can perform similarly to or better than several highly competitive domain adaptation methods on a benchmark dataset of product reviews.</abstract>
<identifier type="citekey">yu-jiang-2017-leveraging</identifier>
<location>
<url>https://aclanthology.org/I17-1066/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>654</start>
<end>663</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Auxiliary Tasks for Document-Level Cross-Domain Sentiment Classification
%A Yu, Jianfei
%A Jiang, Jing
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F yu-jiang-2017-leveraging
%X In this paper, we study domain adaptation with a state-of-the-art hierarchical neural network for document-level sentiment classification. We first design a new auxiliary task based on sentiment scores of domain-independent words. We then propose two neural network architectures to respectively induce document embeddings and sentence embeddings that work well for different domains. When these document and sentence embeddings are used for sentiment classification, we find that with both pseudo and external sentiment lexicons, our proposed methods can perform similarly to or better than several highly competitive domain adaptation methods on a benchmark dataset of product reviews.
%U https://aclanthology.org/I17-1066/
%P 654-663
Markdown (Informal)
[Leveraging Auxiliary Tasks for Document-Level Cross-Domain Sentiment Classification](https://aclanthology.org/I17-1066/) (Yu & Jiang, IJCNLP 2017)
ACL