@inproceedings{zhu-etal-2017-semantic,
    title = "Semantic Document Distance Measures and Unsupervised Document Revision Detection",
    author = "Zhu, Xiaofeng  and
      Klabjan, Diego  and
      Bless, Patrick",
    editor = "Kondrak, Greg  and
      Watanabe, Taro",
    booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = nov,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Asian Federation of Natural Language Processing",
    url = "https://aclanthology.org/I17-1095/",
    pages = "947--956",
    abstract = "In this paper, we model the document revision detection problem as a minimum cost branching problem that relies on computing document distances. Furthermore, we propose two new document distance measures, word vector-based Dynamic Time Warping (wDTW) and word vector-based Tree Edit Distance (wTED). Our revision detection system is designed for a large scale corpus and implemented in Apache Spark. We demonstrate that our system can more precisely detect revisions than state-of-the-art methods by utilizing the Wikipedia revision dumps and simulated data sets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2017-semantic">
    <titleInfo>
        <title>Semantic Document Distance Measures and Unsupervised Document Revision Detection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Xiaofeng</namePart>
        <namePart type="family">Zhu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Diego</namePart>
        <namePart type="family">Klabjan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Patrick</namePart>
        <namePart type="family">Bless</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Greg</namePart>
            <namePart type="family">Kondrak</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Taro</namePart>
            <namePart type="family">Watanabe</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Asian Federation of Natural Language Processing</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we model the document revision detection problem as a minimum cost branching problem that relies on computing document distances. Furthermore, we propose two new document distance measures, word vector-based Dynamic Time Warping (wDTW) and word vector-based Tree Edit Distance (wTED). Our revision detection system is designed for a large scale corpus and implemented in Apache Spark. We demonstrate that our system can more precisely detect revisions than state-of-the-art methods by utilizing the Wikipedia revision dumps and simulated data sets.</abstract>
    <identifier type="citekey">zhu-etal-2017-semantic</identifier>
    <location>
        <url>https://aclanthology.org/I17-1095/</url>
    </location>
    <part>
        <date>2017-11</date>
        <extent unit="page">
            <start>947</start>
            <end>956</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Document Distance Measures and Unsupervised Document Revision Detection
%A Zhu, Xiaofeng
%A Klabjan, Diego
%A Bless, Patrick
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F zhu-etal-2017-semantic
%X In this paper, we model the document revision detection problem as a minimum cost branching problem that relies on computing document distances. Furthermore, we propose two new document distance measures, word vector-based Dynamic Time Warping (wDTW) and word vector-based Tree Edit Distance (wTED). Our revision detection system is designed for a large scale corpus and implemented in Apache Spark. We demonstrate that our system can more precisely detect revisions than state-of-the-art methods by utilizing the Wikipedia revision dumps and simulated data sets.
%U https://aclanthology.org/I17-1095/
%P 947-956
Markdown (Informal)
[Semantic Document Distance Measures and Unsupervised Document Revision Detection](https://aclanthology.org/I17-1095/) (Zhu et al., IJCNLP 2017)
ACL