@inproceedings{dhondt-etal-2017-generating,
title = "Generating a Training Corpus for {OCR} Post-Correction Using Encoder-Decoder Model",
author = "D{'}hondt, Eva and
Grouin, Cyril and
Grau, Brigitte",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1101/",
pages = "1006--1014",
abstract = "In this paper we present a novel approach to the automatic correction of OCR-induced orthographic errors in a given text. While current systems depend heavily on large training corpora or external information, such as domain-specific lexicons or confidence scores from the OCR process, our system only requires a small amount of (relatively) clean training data from a representative corpus to learn a character-based statistical language model using Bidirectional Long Short-Term Memory Networks (biLSTMs). We demonstrate the versatility and adaptability of our system on different text corpora with varying degrees of textual noise, including a real-life OCR corpus in the medical domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dhondt-etal-2017-generating">
<titleInfo>
<title>Generating a Training Corpus for OCR Post-Correction Using Encoder-Decoder Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">D’hondt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyril</namePart>
<namePart type="family">Grouin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brigitte</namePart>
<namePart type="family">Grau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a novel approach to the automatic correction of OCR-induced orthographic errors in a given text. While current systems depend heavily on large training corpora or external information, such as domain-specific lexicons or confidence scores from the OCR process, our system only requires a small amount of (relatively) clean training data from a representative corpus to learn a character-based statistical language model using Bidirectional Long Short-Term Memory Networks (biLSTMs). We demonstrate the versatility and adaptability of our system on different text corpora with varying degrees of textual noise, including a real-life OCR corpus in the medical domain.</abstract>
<identifier type="citekey">dhondt-etal-2017-generating</identifier>
<location>
<url>https://aclanthology.org/I17-1101/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>1006</start>
<end>1014</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating a Training Corpus for OCR Post-Correction Using Encoder-Decoder Model
%A D’hondt, Eva
%A Grouin, Cyril
%A Grau, Brigitte
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F dhondt-etal-2017-generating
%X In this paper we present a novel approach to the automatic correction of OCR-induced orthographic errors in a given text. While current systems depend heavily on large training corpora or external information, such as domain-specific lexicons or confidence scores from the OCR process, our system only requires a small amount of (relatively) clean training data from a representative corpus to learn a character-based statistical language model using Bidirectional Long Short-Term Memory Networks (biLSTMs). We demonstrate the versatility and adaptability of our system on different text corpora with varying degrees of textual noise, including a real-life OCR corpus in the medical domain.
%U https://aclanthology.org/I17-1101/
%P 1006-1014
Markdown (Informal)
[Generating a Training Corpus for OCR Post-Correction Using Encoder-Decoder Model](https://aclanthology.org/I17-1101/) (D’hondt et al., IJCNLP 2017)
ACL