@inproceedings{shao-etal-2017-recall,
title = "Recall is the Proper Evaluation Metric for Word Segmentation",
author = "Shao, Yan and
Hardmeier, Christian and
Nivre, Joakim",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2015/",
pages = "86--90",
abstract = "We extensively analyse the correlations and drawbacks of conventionally employed evaluation metrics for word segmentation. Unlike in standard information retrieval, precision favours under-splitting systems and therefore can be misleading in word segmentation. Overall, based on both theoretical and experimental analysis, we propose that precision should be excluded from the standard evaluation metrics and that the evaluation score obtained by using only recall is sufficient and better correlated with the performance of word segmentation systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shao-etal-2017-recall">
<titleInfo>
<title>Recall is the Proper Evaluation Metric for Word Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Nivre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We extensively analyse the correlations and drawbacks of conventionally employed evaluation metrics for word segmentation. Unlike in standard information retrieval, precision favours under-splitting systems and therefore can be misleading in word segmentation. Overall, based on both theoretical and experimental analysis, we propose that precision should be excluded from the standard evaluation metrics and that the evaluation score obtained by using only recall is sufficient and better correlated with the performance of word segmentation systems.</abstract>
<identifier type="citekey">shao-etal-2017-recall</identifier>
<location>
<url>https://aclanthology.org/I17-2015/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>86</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recall is the Proper Evaluation Metric for Word Segmentation
%A Shao, Yan
%A Hardmeier, Christian
%A Nivre, Joakim
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F shao-etal-2017-recall
%X We extensively analyse the correlations and drawbacks of conventionally employed evaluation metrics for word segmentation. Unlike in standard information retrieval, precision favours under-splitting systems and therefore can be misleading in word segmentation. Overall, based on both theoretical and experimental analysis, we propose that precision should be excluded from the standard evaluation metrics and that the evaluation score obtained by using only recall is sufficient and better correlated with the performance of word segmentation systems.
%U https://aclanthology.org/I17-2015/
%P 86-90
Markdown (Informal)
[Recall is the Proper Evaluation Metric for Word Segmentation](https://aclanthology.org/I17-2015/) (Shao et al., IJCNLP 2017)
ACL
- Yan Shao, Christian Hardmeier, and Joakim Nivre. 2017. Recall is the Proper Evaluation Metric for Word Segmentation. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 86–90, Taipei, Taiwan. Asian Federation of Natural Language Processing.