@inproceedings{kajiwara-fujita-2017-semantic,
    title = "Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification",
    author = "Kajiwara, Tomoyuki  and
      Fujita, Atsushi",
    editor = "Kondrak, Greg  and
      Watanabe, Taro",
    booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
    month = nov,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Asian Federation of Natural Language Processing",
    url = "https://aclanthology.org/I17-2019/",
    pages = "109--115",
    abstract = "This paper examines the usefulness of semantic features based on word alignments for estimating the quality of text simplification. Specifically, we introduce seven types of alignment-based features computed on the basis of word embeddings and paraphrase lexicons. Through an empirical experiment using the QATS dataset, we confirm that we can achieve the state-of-the-art performance only with these features."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kajiwara-fujita-2017-semantic">
    <titleInfo>
        <title>Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Tomoyuki</namePart>
        <namePart type="family">Kajiwara</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Atsushi</namePart>
        <namePart type="family">Fujita</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Greg</namePart>
            <namePart type="family">Kondrak</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Taro</namePart>
            <namePart type="family">Watanabe</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Asian Federation of Natural Language Processing</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper examines the usefulness of semantic features based on word alignments for estimating the quality of text simplification. Specifically, we introduce seven types of alignment-based features computed on the basis of word embeddings and paraphrase lexicons. Through an empirical experiment using the QATS dataset, we confirm that we can achieve the state-of-the-art performance only with these features.</abstract>
    <identifier type="citekey">kajiwara-fujita-2017-semantic</identifier>
    <location>
        <url>https://aclanthology.org/I17-2019/</url>
    </location>
    <part>
        <date>2017-11</date>
        <extent unit="page">
            <start>109</start>
            <end>115</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification
%A Kajiwara, Tomoyuki
%A Fujita, Atsushi
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F kajiwara-fujita-2017-semantic
%X This paper examines the usefulness of semantic features based on word alignments for estimating the quality of text simplification. Specifically, we introduce seven types of alignment-based features computed on the basis of word embeddings and paraphrase lexicons. Through an empirical experiment using the QATS dataset, we confirm that we can achieve the state-of-the-art performance only with these features.
%U https://aclanthology.org/I17-2019/
%P 109-115
Markdown (Informal)
[Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification](https://aclanthology.org/I17-2019/) (Kajiwara & Fujita, IJCNLP 2017)
ACL