@inproceedings{kunchukuttan-etal-2017-utilizing,
title = "Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based {SMT}",
author = "Kunchukuttan, Anoop and
Shah, Maulik and
Prakash, Pradyot and
Bhattacharyya, Pushpak",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2048",
pages = "283--289",
abstract = "We investigate pivot-based translation between related languages in a low resource, phrase-based SMT setting. We show that a subword-level pivot-based SMT model using a related pivot language is substantially better than word and morpheme-level pivot models. It is also highly competitive with the best direct translation model, which is encouraging as no direct source-target training corpus is used. We also show that combining multiple related language pivot models can rival a direct translation model. Thus, the use of subwords as translation units coupled with multiple related pivot languages can compensate for the lack of a direct parallel corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kunchukuttan-etal-2017-utilizing">
<titleInfo>
<title>Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based SMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Kunchukuttan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maulik</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradyot</namePart>
<namePart type="family">Prakash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate pivot-based translation between related languages in a low resource, phrase-based SMT setting. We show that a subword-level pivot-based SMT model using a related pivot language is substantially better than word and morpheme-level pivot models. It is also highly competitive with the best direct translation model, which is encouraging as no direct source-target training corpus is used. We also show that combining multiple related language pivot models can rival a direct translation model. Thus, the use of subwords as translation units coupled with multiple related pivot languages can compensate for the lack of a direct parallel corpus.</abstract>
<identifier type="citekey">kunchukuttan-etal-2017-utilizing</identifier>
<location>
<url>https://aclanthology.org/I17-2048</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>283</start>
<end>289</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based SMT
%A Kunchukuttan, Anoop
%A Shah, Maulik
%A Prakash, Pradyot
%A Bhattacharyya, Pushpak
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F kunchukuttan-etal-2017-utilizing
%X We investigate pivot-based translation between related languages in a low resource, phrase-based SMT setting. We show that a subword-level pivot-based SMT model using a related pivot language is substantially better than word and morpheme-level pivot models. It is also highly competitive with the best direct translation model, which is encouraging as no direct source-target training corpus is used. We also show that combining multiple related language pivot models can rival a direct translation model. Thus, the use of subwords as translation units coupled with multiple related pivot languages can compensate for the lack of a direct parallel corpus.
%U https://aclanthology.org/I17-2048
%P 283-289
Markdown (Informal)
[Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based SMT](https://aclanthology.org/I17-2048) (Kunchukuttan et al., IJCNLP 2017)
ACL