@inproceedings{nguyen-chiang-2017-transfer,
title = "Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation",
author = "Nguyen, Toan Q. and
Chiang, David",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2050/",
pages = "296--301",
abstract = "We present a simple method to improve neural translation of a low-resource language pair using parallel data from a related, also low-resource, language pair. The method is based on the transfer method of Zoph et al., but whereas their method ignores any source vocabulary overlap, ours exploits it. First, we split words using Byte Pair Encoding (BPE) to increase vocabulary overlap. Then, we train a model on the first language pair and transfer its parameters, including its source word embeddings, to another model and continue training on the second language pair. Our experiments show that transfer learning helps word-based translation only slightly, but when used on top of a much stronger BPE baseline, it yields larger improvements of up to 4.3 BLEU."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-chiang-2017-transfer">
<titleInfo>
<title>Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toan</namePart>
<namePart type="given">Q</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple method to improve neural translation of a low-resource language pair using parallel data from a related, also low-resource, language pair. The method is based on the transfer method of Zoph et al., but whereas their method ignores any source vocabulary overlap, ours exploits it. First, we split words using Byte Pair Encoding (BPE) to increase vocabulary overlap. Then, we train a model on the first language pair and transfer its parameters, including its source word embeddings, to another model and continue training on the second language pair. Our experiments show that transfer learning helps word-based translation only slightly, but when used on top of a much stronger BPE baseline, it yields larger improvements of up to 4.3 BLEU.</abstract>
<identifier type="citekey">nguyen-chiang-2017-transfer</identifier>
<location>
<url>https://aclanthology.org/I17-2050/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>296</start>
<end>301</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation
%A Nguyen, Toan Q.
%A Chiang, David
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F nguyen-chiang-2017-transfer
%X We present a simple method to improve neural translation of a low-resource language pair using parallel data from a related, also low-resource, language pair. The method is based on the transfer method of Zoph et al., but whereas their method ignores any source vocabulary overlap, ours exploits it. First, we split words using Byte Pair Encoding (BPE) to increase vocabulary overlap. Then, we train a model on the first language pair and transfer its parameters, including its source word embeddings, to another model and continue training on the second language pair. Our experiments show that transfer learning helps word-based translation only slightly, but when used on top of a much stronger BPE baseline, it yields larger improvements of up to 4.3 BLEU.
%U https://aclanthology.org/I17-2050/
%P 296-301
Markdown (Informal)
[Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation](https://aclanthology.org/I17-2050/) (Nguyen & Chiang, IJCNLP 2017)
ACL