PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts

Franck Dernoncourt, Ji Young Lee


Abstract
We present PubMed 200k RCT, a new dataset based on PubMed for sequential sentence classification. The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling 2.3 million sentences. Each sentence of each abstract is labeled with their role in the abstract using one of the following classes: background, objective, method, result, or conclusion. The purpose of releasing this dataset is twofold. First, the majority of datasets for sequential short-text classification (i.e., classification of short texts that appear in sequences) are small: we hope that releasing a new large dataset will help develop more accurate algorithms for this task. Second, from an application perspective, researchers need better tools to efficiently skim through the literature. Automatically classifying each sentence in an abstract would help researchers read abstracts more efficiently, especially in fields where abstracts may be long, such as the medical field.
Anthology ID:
I17-2052
Volume:
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Month:
November
Year:
2017
Address:
Taipei, Taiwan
Editors:
Greg Kondrak, Taro Watanabe
Venue:
IJCNLP
SIG:
Publisher:
Asian Federation of Natural Language Processing
Note:
Pages:
308–313
Language:
URL:
https://aclanthology.org/I17-2052/
DOI:
Bibkey:
Cite (ACL):
Franck Dernoncourt and Ji Young Lee. 2017. PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 308–313, Taipei, Taiwan. Asian Federation of Natural Language Processing.
Cite (Informal):
PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts (Dernoncourt & Lee, IJCNLP 2017)
Copy Citation:
PDF:
https://aclanthology.org/I17-2052.pdf
Code
 Franck-Dernoncourt/pubmed-rct +  additional community code
Data
PubMed RCT