@inproceedings{sakaguchi-etal-2017-grammatical,
title = "Grammatical Error Correction with Neural Reinforcement Learning",
author = "Sakaguchi, Keisuke and
Post, Matt and
Van Durme, Benjamin",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2062/",
pages = "366--372",
abstract = "We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sakaguchi-etal-2017-grammatical">
<titleInfo>
<title>Grammatical Error Correction with Neural Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keisuke</namePart>
<namePart type="family">Sakaguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.</abstract>
<identifier type="citekey">sakaguchi-etal-2017-grammatical</identifier>
<location>
<url>https://aclanthology.org/I17-2062/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>366</start>
<end>372</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Grammatical Error Correction with Neural Reinforcement Learning
%A Sakaguchi, Keisuke
%A Post, Matt
%A Van Durme, Benjamin
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F sakaguchi-etal-2017-grammatical
%X We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.
%U https://aclanthology.org/I17-2062/
%P 366-372
Markdown (Informal)
[Grammatical Error Correction with Neural Reinforcement Learning](https://aclanthology.org/I17-2062/) (Sakaguchi et al., IJCNLP 2017)
ACL
- Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. 2017. Grammatical Error Correction with Neural Reinforcement Learning. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 366–372, Taipei, Taiwan. Asian Federation of Natural Language Processing.