@inproceedings{noh-etal-2017-wisereporter,
title = "{W}ise{R}eporter: A {K}orean Report Generation System",
author = "Noh, Yunseok and
Choi, Su Jeong and
Park, Seong-Bae and
Park, Se-Young",
editor = "Park, Seong-Bae and
Supnithi, Thepchai",
booktitle = "Proceedings of the {IJCNLP} 2017, System Demonstrations",
month = nov,
year = "2017",
address = "Tapei, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/I17-3003/",
pages = "9--12",
abstract = "We demonstrate a report generation system called WiseReporter. The WiseReporter generates a text report of a specific topic which is usually given as a keyword by verbalizing knowledge base facts involving the topic. This demonstration does not demonstate only the report itself, but also the processes how the sentences for the report are generated. We are planning to enhance WiseReporter in the future by adding data analysis based on deep learning architecture and text summarization."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="noh-etal-2017-wisereporter">
<titleInfo>
<title>WiseReporter: A Korean Report Generation System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunseok</namePart>
<namePart type="family">Noh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="given">Jeong</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seong-Bae</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Se-Young</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seong-Bae</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thepchai</namePart>
<namePart type="family">Supnithi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tapei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We demonstrate a report generation system called WiseReporter. The WiseReporter generates a text report of a specific topic which is usually given as a keyword by verbalizing knowledge base facts involving the topic. This demonstration does not demonstate only the report itself, but also the processes how the sentences for the report are generated. We are planning to enhance WiseReporter in the future by adding data analysis based on deep learning architecture and text summarization.</abstract>
<identifier type="citekey">noh-etal-2017-wisereporter</identifier>
<location>
<url>https://aclanthology.org/I17-3003/</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>9</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WiseReporter: A Korean Report Generation System
%A Noh, Yunseok
%A Choi, Su Jeong
%A Park, Seong-Bae
%A Park, Se-Young
%Y Park, Seong-Bae
%Y Supnithi, Thepchai
%S Proceedings of the IJCNLP 2017, System Demonstrations
%D 2017
%8 November
%I Association for Computational Linguistics
%C Tapei, Taiwan
%F noh-etal-2017-wisereporter
%X We demonstrate a report generation system called WiseReporter. The WiseReporter generates a text report of a specific topic which is usually given as a keyword by verbalizing knowledge base facts involving the topic. This demonstration does not demonstate only the report itself, but also the processes how the sentences for the report are generated. We are planning to enhance WiseReporter in the future by adding data analysis based on deep learning architecture and text summarization.
%U https://aclanthology.org/I17-3003/
%P 9-12
Markdown (Informal)
[WiseReporter: A Korean Report Generation System](https://aclanthology.org/I17-3003/) (Noh et al., IJCNLP 2017)
ACL
- Yunseok Noh, Su Jeong Choi, Seong-Bae Park, and Se-Young Park. 2017. WiseReporter: A Korean Report Generation System. In Proceedings of the IJCNLP 2017, System Demonstrations, pages 9–12, Tapei, Taiwan. Association for Computational Linguistics.