@inproceedings{wang-etal-2017-totemss,
title = "{TOTEMSS}: Topic-based, Temporal Sentiment Summarisation for {T}witter",
author = "Wang, Bo and
Liakata, Maria and
Tsakalidis, Adam and
Georgakopoulos Kolaitis, Spiros and
Papadopoulos, Symeon and
Apostolidis, Lazaros and
Zubiaga, Arkaitz and
Procter, Rob and
Kompatsiaris, Yiannis",
editor = "Park, Seong-Bae and
Supnithi, Thepchai",
booktitle = "Proceedings of the {IJCNLP} 2017, System Demonstrations",
month = nov,
year = "2017",
address = "Tapei, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/I17-3006",
pages = "21--24",
abstract = "We present a system for time sensitive, topic based summarisation of the sentiment around target entities and topics in collections of tweets. We describe the main elements of the system and illustrate its functionality with two examples of sentiment analysis of topics related to the 2017 UK general election.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2017-totemss">
<titleInfo>
<title>TOTEMSS: Topic-based, Temporal Sentiment Summarisation for Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Tsakalidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spiros</namePart>
<namePart type="family">Georgakopoulos Kolaitis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Symeon</namePart>
<namePart type="family">Papadopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lazaros</namePart>
<namePart type="family">Apostolidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arkaitz</namePart>
<namePart type="family">Zubiaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Procter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiannis</namePart>
<namePart type="family">Kompatsiaris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seong-Bae</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thepchai</namePart>
<namePart type="family">Supnithi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tapei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system for time sensitive, topic based summarisation of the sentiment around target entities and topics in collections of tweets. We describe the main elements of the system and illustrate its functionality with two examples of sentiment analysis of topics related to the 2017 UK general election.</abstract>
<identifier type="citekey">wang-etal-2017-totemss</identifier>
<location>
<url>https://aclanthology.org/I17-3006</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>21</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TOTEMSS: Topic-based, Temporal Sentiment Summarisation for Twitter
%A Wang, Bo
%A Liakata, Maria
%A Tsakalidis, Adam
%A Georgakopoulos Kolaitis, Spiros
%A Papadopoulos, Symeon
%A Apostolidis, Lazaros
%A Zubiaga, Arkaitz
%A Procter, Rob
%A Kompatsiaris, Yiannis
%Y Park, Seong-Bae
%Y Supnithi, Thepchai
%S Proceedings of the IJCNLP 2017, System Demonstrations
%D 2017
%8 November
%I Association for Computational Linguistics
%C Tapei, Taiwan
%F wang-etal-2017-totemss
%X We present a system for time sensitive, topic based summarisation of the sentiment around target entities and topics in collections of tweets. We describe the main elements of the system and illustrate its functionality with two examples of sentiment analysis of topics related to the 2017 UK general election.
%U https://aclanthology.org/I17-3006
%P 21-24
Markdown (Informal)
[TOTEMSS: Topic-based, Temporal Sentiment Summarisation for Twitter](https://aclanthology.org/I17-3006) (Wang et al., IJCNLP 2017)
ACL
- Bo Wang, Maria Liakata, Adam Tsakalidis, Spiros Georgakopoulos Kolaitis, Symeon Papadopoulos, Lazaros Apostolidis, Arkaitz Zubiaga, Rob Procter, and Yiannis Kompatsiaris. 2017. TOTEMSS: Topic-based, Temporal Sentiment Summarisation for Twitter. In Proceedings of the IJCNLP 2017, System Demonstrations, pages 21–24, Tapei, Taiwan. Association for Computational Linguistics.