@inproceedings{dzendzik-etal-2017-adapt,
title = "{ADAPT} Centre Cone Team at {IJCNLP}-2017 Task 5: A Similarity-Based Logistic Regression Approach to Multi-choice Question Answering in an Examinations Shared Task",
author = "Dzendzik, Daria and
Poncelas, Alberto and
Vogel, Carl and
Liu, Qun",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4010/",
pages = "67--72",
abstract = "We describe the work of a team from the ADAPT Centre in Ireland in addressing automatic answer selection for the Multi-choice Question Answering in Examinations shared task. The system is based on a logistic regression over the string similarities between question, answer, and additional text. We obtain the highest grade out of six systems: 48.7{\%} accuracy on a validation set (vs. a baseline of 29.45{\%}) and 45.6{\%} on a test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dzendzik-etal-2017-adapt">
<titleInfo>
<title>ADAPT Centre Cone Team at IJCNLP-2017 Task 5: A Similarity-Based Logistic Regression Approach to Multi-choice Question Answering in an Examinations Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daria</namePart>
<namePart type="family">Dzendzik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Poncelas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Vogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the work of a team from the ADAPT Centre in Ireland in addressing automatic answer selection for the Multi-choice Question Answering in Examinations shared task. The system is based on a logistic regression over the string similarities between question, answer, and additional text. We obtain the highest grade out of six systems: 48.7% accuracy on a validation set (vs. a baseline of 29.45%) and 45.6% on a test set.</abstract>
<identifier type="citekey">dzendzik-etal-2017-adapt</identifier>
<location>
<url>https://aclanthology.org/I17-4010/</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>67</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ADAPT Centre Cone Team at IJCNLP-2017 Task 5: A Similarity-Based Logistic Regression Approach to Multi-choice Question Answering in an Examinations Shared Task
%A Dzendzik, Daria
%A Poncelas, Alberto
%A Vogel, Carl
%A Liu, Qun
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F dzendzik-etal-2017-adapt
%X We describe the work of a team from the ADAPT Centre in Ireland in addressing automatic answer selection for the Multi-choice Question Answering in Examinations shared task. The system is based on a logistic regression over the string similarities between question, answer, and additional text. We obtain the highest grade out of six systems: 48.7% accuracy on a validation set (vs. a baseline of 29.45%) and 45.6% on a test set.
%U https://aclanthology.org/I17-4010/
%P 67-72
Markdown (Informal)
[ADAPT Centre Cone Team at IJCNLP-2017 Task 5: A Similarity-Based Logistic Regression Approach to Multi-choice Question Answering in an Examinations Shared Task](https://aclanthology.org/I17-4010/) (Dzendzik et al., IJCNLP 2017)
ACL