@inproceedings{liao-etal-2017-ynu,
title = "{YNU}-{HPCC} at {IJCNLP}-2017 Task 1: {C}hinese Grammatical Error Diagnosis Using a Bi-directional {LSTM}-{CRF} Model",
author = "Liao, Quanlei and
Wang, Jin and
Yang, Jinnan and
Zhang, Xuejie",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4011/",
pages = "73--77",
abstract = "Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2017-ynu">
<titleInfo>
<title>YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Quanlei</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinnan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem.</abstract>
<identifier type="citekey">liao-etal-2017-ynu</identifier>
<location>
<url>https://aclanthology.org/I17-4011/</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>73</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model
%A Liao, Quanlei
%A Wang, Jin
%A Yang, Jinnan
%A Zhang, Xuejie
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F liao-etal-2017-ynu
%X Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem.
%U https://aclanthology.org/I17-4011/
%P 73-77
Markdown (Informal)
[YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model](https://aclanthology.org/I17-4011/) (Liao et al., IJCNLP 2017)
ACL