@inproceedings{liao-etal-2017-ynu,
    title = "{YNU}-{HPCC} at {IJCNLP}-2017 Task 1: {C}hinese Grammatical Error Diagnosis Using a Bi-directional {LSTM}-{CRF} Model",
    author = "Liao, Quanlei  and
      Wang, Jin  and
      Yang, Jinnan  and
      Zhang, Xuejie",
    editor = "Liu, Chao-Hong  and
      Nakov, Preslav  and
      Xue, Nianwen",
    booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
    month = dec,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Asian Federation of Natural Language Processing",
    url = "https://aclanthology.org/I17-4011/",
    pages = "73--77",
    abstract = "Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2017-ynu">
    <titleInfo>
        <title>YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Quanlei</namePart>
        <namePart type="family">Liao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jin</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jinnan</namePart>
        <namePart type="family">Yang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xuejie</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Chao-Hong</namePart>
            <namePart type="family">Liu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Preslav</namePart>
            <namePart type="family">Nakov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nianwen</namePart>
            <namePart type="family">Xue</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Asian Federation of Natural Language Processing</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem.</abstract>
    <identifier type="citekey">liao-etal-2017-ynu</identifier>
    <location>
        <url>https://aclanthology.org/I17-4011/</url>
    </location>
    <part>
        <date>2017-12</date>
        <extent unit="page">
            <start>73</start>
            <end>77</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model
%A Liao, Quanlei
%A Wang, Jin
%A Yang, Jinnan
%A Zhang, Xuejie
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F liao-etal-2017-ynu
%X Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem.
%U https://aclanthology.org/I17-4011/
%P 73-77
Markdown (Informal)
[YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model](https://aclanthology.org/I17-4011/) (Liao et al., IJCNLP 2017)
ACL