@inproceedings{li-etal-2017-cvte,
title = "{CVTE} at {IJCNLP}-2017 Task 1: Character Checking System for {C}hinese Grammatical Error Diagnosis Task",
author = "Li, Xian and
Wang, Peng and
Wang, Suixue and
Jiang, Guanyu and
You, Tianyuan",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4012",
pages = "78--83",
abstract = "Grammatical error diagnosis is an important task in natural language processing. This paper introduces CVTE Character Checking System in the NLP-TEA-4 shared task for CGED 2017, we use Bi-LSTM to generate the probability of every character, then take two kinds of strategies to decide whether a character is correct or not. This system is probably more suitable to deal with the error type of bad word selection, which is one of four types of errors, and the rest are words re-dundancy, words missing and words disorder. Finally the second strategy achieves better F1 score than the first one at all of detection level, identification level, position level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2017-cvte">
<titleInfo>
<title>CVTE at IJCNLP-2017 Task 1: Character Checking System for Chinese Grammatical Error Diagnosis Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suixue</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanyu</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyuan</namePart>
<namePart type="family">You</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Grammatical error diagnosis is an important task in natural language processing. This paper introduces CVTE Character Checking System in the NLP-TEA-4 shared task for CGED 2017, we use Bi-LSTM to generate the probability of every character, then take two kinds of strategies to decide whether a character is correct or not. This system is probably more suitable to deal with the error type of bad word selection, which is one of four types of errors, and the rest are words re-dundancy, words missing and words disorder. Finally the second strategy achieves better F1 score than the first one at all of detection level, identification level, position level.</abstract>
<identifier type="citekey">li-etal-2017-cvte</identifier>
<location>
<url>https://aclanthology.org/I17-4012</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>78</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CVTE at IJCNLP-2017 Task 1: Character Checking System for Chinese Grammatical Error Diagnosis Task
%A Li, Xian
%A Wang, Peng
%A Wang, Suixue
%A Jiang, Guanyu
%A You, Tianyuan
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F li-etal-2017-cvte
%X Grammatical error diagnosis is an important task in natural language processing. This paper introduces CVTE Character Checking System in the NLP-TEA-4 shared task for CGED 2017, we use Bi-LSTM to generate the probability of every character, then take two kinds of strategies to decide whether a character is correct or not. This system is probably more suitable to deal with the error type of bad word selection, which is one of four types of errors, and the rest are words re-dundancy, words missing and words disorder. Finally the second strategy achieves better F1 score than the first one at all of detection level, identification level, position level.
%U https://aclanthology.org/I17-4012
%P 78-83
Markdown (Informal)
[CVTE at IJCNLP-2017 Task 1: Character Checking System for Chinese Grammatical Error Diagnosis Task](https://aclanthology.org/I17-4012) (Li et al., IJCNLP 2017)
ACL